
Unit 5: Applets

Unit 5
Applets and Event Handling

Topics:
Applets: Applet class, Applet structure, An example of Applet, Applet life Cycle, Event
Delagation Model, Java.awt.event description, Sources of Events, Event Listeners, Adapter class,

inner class

Part-1: Applet Programming

Introduction to Applet

Applets are small Java programs that are used in Internet computing. The Applets can be easily
transported over the internet from one computer to another computer and can be run using
"appletviewer" or java enabled "Web Browser". An Applet like any application program can do many
things for us. It can perform arithmetic operations, display graphics, animations, text, accept the user
input and play interactive games.

Applets are created in the following situations:

1. When we need something to be included dynamically in the web page.
2. When we require some flash output
3. When we want to create a program and make it available on the internet.

Types of Applet

There are two types of Applets.

 The first type is created is based on the Applet class of java.applet package. These

applets use the Abstract Window Toolkit(AWT) for designing the graphical user

interface.

 The second type of type of the Applets are based on the Swing class JApplet. The swing

Applets use the swing classes to create Graphical User Interface.
The JApplet inherits the properties from the Applet, so all the features of the Applet are available

in the JApplet.

Applet Basics

 All applets are subclasses (either directly or indirectly) of Applet. Applets are not

stand-alone programs. Instead, they run within either a web browser or an applet viewer,

which is provided by the JDK.

 Execution of an applet does not begin at main().

 Output to your applet’s window is not performed by System.out.println(). Rather, in

non-Swing applets, output is handled with various AWT methods, such as drawString(),

which outputs a string to a specified X,Y location

 To use an applet, it is specified in an HTMLfile. One way to do this is by using the

APPLET tag. (HTML stands for Hyper Text Markup Language)

Unit 5: Applets

 The applet will be executed by a Java-enabled web browser when it encounters the

APPLET tag within the HTMLfile.

 To just test the applet it can be executed using the appletviewer. The applet tag must be

included as comment lines in the java source program as follow:

/*<applet code="applet_name" width=400 height=400 ></applet> */

 To view the applet using the HTML file, it can be included in the HTML file with

<applet. Tag as follw:

<html>

Filename.HTML

<head><title> The name of the Web Page</title>

</head>

<body>

<applet code="applet_name" width=400 height=400 ></applet>

</body>

</html>

Note: Here, the <applet> is the name of the tag, and "code" ,"width" and "height"
are called attributes of the Tag, applet_name, 400, 400 are called values
respectively.

The Applet class

The Applet class defines several methods that support for execution of the applets, such

as starting and stopping. It also provides methods to load and display images. It also provides

methods for loading and playing the audio clips. The Applet extends the AWT class Panel. The

Panel extends Container class, which in turn extends from the Component. The applet will be

executed by a Java-enabled web browser when it encounters the APPLET tag within the

HTMLfile.

Component

Container

Panel

Applet

JApplet

Fig 1: Hierarchy of Applet class

Unit 5: Applets

methods of Applet class:

destroy()

Called by the browser or applet viewer to inform this applet that it is being reclaimed and

that it should destroy any resources that it has allocated.

getAppletContext()

Determines this applet's context, which allows the applet to query and affect the

environment in which it runs.

getAppletInfo()

Returns information about this applet.

getAudioClip(URL)

Returns the AudioClip object specified by the URL argument.

getAudioClip(URL, String)

Returns the AudioClip object specified by the URL and name arguments.

getCodeBase()

Gets the base URL.

getDocumentBase()

Gets the document URL.

getImage(URL)

Returns an Image object that can then be painted on the screen.

getImage(URL, String)

Returns an Image object that can then be painted on the screen.

getLocale()

Gets the Locale for the applet, if it has been set.

getParameter(String)

Returns the value of the named parameter in the HTML tag.

getParameterInfo()

Returns information about the parameters than are understood by this applet.

init()
Called by the browser or applet viewer to inform this applet that it has been loaded into

the system.

isActive()

Determines if this applet is active.

play(URL)

Plays the audio clip at the specified absolute URL.

play(URL, String)

Plays the audio clip given the URL and a specifier that is relative to it.

resize(Dimension)

Requests that this applet be resized.

resize(int, int)

Requests that this applet be resized.

setStub(AppletStub)

Sets this applet's stub.

showStatus(String)

Requests that the argument string be displayed in the "status window".

start()

http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#destroy()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getAppletContext()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getAppletInfo()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getAudioClip(java.net.URL)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getAudioClip(java.net.URL,%20java.lang.String)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getCodeBase()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getDocumentBase()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getImage(java.net.URL)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getImage(java.net.URL,%20java.lang.String)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getLocale()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getParameter(java.lang.String)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#getParameterInfo()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#init()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#isActive()
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#play(java.net.URL)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#play(java.net.URL,%20java.lang.String)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#resize(java.awt.Dimension)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#resize(int,%20int)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#setStub(java.applet.AppletStub)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#showStatus(java.lang.String)
http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#start()

Unit 5: Applets

Called by the browser or applet viewer to inform this applet that it should start its

execution.

stop()

Called by the browser or applet viewer to inform this applet that it should stop its

execution.

Applet Architecture

An applet is a window-based program. As such, its architecture is different from the console-

based programs. The key concepts are as follow:

 First, applets are event driven. An applet waits until an event occurs. The run-time

system notifies the applet about an event by calling an event handler that has been

provided by the applet. Once this happens, the applet must take appropriate action and

then quickly return.

 Second, the user initiates interaction with an applet. These interactions are sent to the

applet as events to which the applet must respond. For example, when the user clicks the

mouse inside the applet’s window, a mouse-clicked event is generated. If the user presses

a key while the applet’s window has input focus, a keypress event is generated

An Applet Skelton –An Example of Applet

Most of the applets override a set of methods of the Applet. Four of these methods, init(), start(

), stop(), and destroy(), apply to all applets and are defined by Applet. Default

implementations for all of these methods are provided. Applets do not need to override those

methods they do not use.

AWT-based applets will also override the paint() method, which is defined by the AWT

Component class. This method is called when the applet’s output must be redisplayed. These

five methods can be assembled into the skeleton shown here:

// An Applet skeleton.

import java.awt.*;

import java.applet.*;

/*

<applet code="AppletSkel" width=300 height=100>

</applet>

*/

public class AppletSkel extends Applet

{

// Called first.

public void init()

{

// initialization

}

/* Called second, after init(). Also called whenever

the applet is restarted. */

http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/api/java.applet.Applet.html#stop()

Unit 5: Applets

public void start()

{

// start or resume execution

}

// Called when the applet is stopped.

public void stop()

{

// suspends execution

}

/* Called when applet is terminated. This is the last

method executed. */

public void destroy()

{

// perform shutdown activities

}

// Called when an applet's window must be restored.

public void paint(Graphics g)

{

// redisplay contents of window

}

}

The procedure for Running

Unit 5: Applets

Life Cycle of an Applet

It is important to understand the order in which the various methods shown in the skeleton are

called. When an applet begins, the following methods are called, in this sequence:

1. init()

2. start()

3. paint()

When an applet is terminated, the following sequence of method calls takes place:

1. stop()

2. destroy()

Let’s look more closely at these methods.

Fig 2: The Life Cycle of the Applet

Unit 5: Applets

init()

The init() method is the first method to be called. This is where you should initialize variables.

This method is called only once during the run time of your applet.

start()

The start() method is called after init(). It is also called to restart an applet after it has been

stopped. Whereas init() is called once—the first time an applet is loaded—start() is called each

time an applet’s HTML document is displayed onscreen. So, if a user leaves a web page and

comes back, the applet resumes execution at start().

paint()

The paint() method is called each time your applet’s output must be redrawn. This situation can

occur for several reasons. For example, the window in which the applet is running may be

overwritten by another window and then uncovered. Or the applet window may be minimized

and then restored. paint() is also called when the applet begins execution. Whatever the cause,

whenever the applet must redraw its output, paint() is called. The paint() method has one

parameter of type Graphics. This parameter will contain the graphics context, which describes

the graphics environment in which the applet is running. This context is used whenever output to

the applet is required.

stop()

The stop() method is called when a web browser leaves the HTML document containing the

applet—when it goes to another page, for example. When stop() is called, the applet is probably

running. You should use stop() to suspend threads that don’t need to run when the applet is not

visible. You can restart them when start() is called if the user returns to the page.

destroy()

The destroy() method is called when the environment determines that your applet needs to be

removed completely from memory. At this point, you should free up any resources the applet

may be using. The stop() method is always called before destroy().

Requesting the repaint() method

One of the important architectural constraints that have been imposed on an applet is that it
must quickly return control to the AWT run-time system. It cannot create a loop inside paint().
This would prevent control from passing back to the AWT. Whenever your applet needs to
update the information displayed in its window, it simply calls repaint(). The repaint()
method is defined by the AWT that causes AWT run-time system to execute a call to your
applet's update() method, which in turn calls paint(). The AWT will then execute a call to
paint() that will display the stored information. The repaint() method has four forms. The
simplest version of repaint() is:

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

Unit 5: Applets

1. void repaint ()

This causes the entire window to be repainted. Other versions that will cause repaint

are:

2. void repaint(int left, int top, int width, int height)

If your system is slow or busy, update() might not be called immediately. If multiple

calls have been made to AWT within a short period of time, then update() is not called

very frequently. This can be a problem in many situations in which a consistent update

time is necessary. One solution to this problem is to use the following forms of repaint(

):

3. void repaint (long maxDelay)

4. void repaint (long maxDelay, int x, int y, int width, int height)

Where "maxDelay" is the number milliseconds should be elapsed before updat() method is

called.

Using the Status Window

In addition to displaying information in its window, an applet can also output a message to the

status window of the browser or applet viewer on which it is running. To do so, call showStatus(

) with the string that you want displayed. The status window is a good place to give the user

feedback about what is occurring in the applet, suggest options, or possibly report some types of

errors. The status window also makes an excellent debugging aid, because it gives you an easy

way to output information about your applet.

Example program

// Using the Status Window.

import java.awt.*;

import java.applet.*;

/*

StatusWindow.java

Unit 5: Applets

<applet code="StatusWindow" width=300 height=50>

</applet>

*/

public class StatusWindow extends Applet

{

public void init()

{

setBackground(Color.cyan);

}

// Display msg in applet window.

public void paint(Graphics g)

{

g.drawString("This is in the applet window.", 10, 20);

showStatus("This is shown in the status window.");

}

}

Running applet:
1. javac StatusWindow.java

2. appletviewer StatusWindow.java

Output:

Passing parameters to Applet

We can supply user defined parameters to an applet using the <param> Tag of HTML. Each
<param> Tag has the attributes such as "name" , "value" to which actual values are assigned. Using this
tag we can change the text to be displayed through applet. We write the <param> Tag as follow:

Unit 5: Applets

<param name="name1" value="Hello Applet" > </param>

Passing parameters to an Applet is something similar to passing parameters to main() method
using command line arguments. To set up and handle parameters, we need to do two things:

1. Include appropriate <param> Tag in the HTML file
2. Provide the code in the applet to take these parameters.

Example Program:

ParaPassing.java

import java.applet.*;
import java.awt.*;
public class ParaPassing extends Applet
{

String str;
public void init()
{

str=getParameter("name1");
if(str==null)

str="Java";
str="Hello "+str;

}
public void paint(Graphics g)
{

g.drawString(str,50,50);
}

}

<html>

para.html

<head> <title> Passing Parameters</title> </head>
<body bgcolor=pink >

<applet code="ParaPassing.class" width=400 height=400 >
<param name="name1" value="Example Applet for Passing the Parameters" >
</param>
</applet>

</body>
</html>
Running the Program:

1. Compile the "ParaPassing.java" using the "javac" command, which generates the

"ParaPassing.class " file
2. Use "ParaPassing.class" file to code attribute of the <applet> Tag and save it as "para.html"

Unit 5: Applets

3. Give "para.html" as input to the "appletviewer" to see the output or open the file using the applet
enabled web broser.

Output:

Getting the Input from the User

Applets work in the graphical environment. Therefore, applets treat inputs as text strings. we
must first create an area of the screen in which user can type and edit input items. we can do this by
using the TextField class of the applet package. Once text fields are created, user can enter and edit the
content.

Next step is to retrieve the contents from the text fields for display of calculations, if any. The

text fields contain the item in the form of String. They need to be converted to the right form, before
they are used in any computations.

Example Program:

import java.applet.*;
import java.awt.*;
public class InputApplet extends Applet
{

TextField text1,text2;
Label l1,l2;
public void init()
{

text1=new TextField(8);
l1=new Label("Enter First No");
text2=new TextField(8);
l2=new Label("Enter second No");

Unit 5: Applets

add(l1);
add(text1);
add(l2);
add(text2);
text1.setText("0");
text2.setText("0");

} public void paint(Graphics g)
{

int x=0,y=0,z=0;
String s1,s2,res;
g.drawString("Enter a number in each text box",50,100);
try
{

s1=text1.getText();
x=Integer.parseInt(s1);
s2=text2.getText();
y=Integer.parseInt(s2);

}
catch(Exception e)
{

}

z=x+y;
res=String.valueOf(z);

g.drawString("The Sum is :",50,150);
g.drawString(res,150,150);

}
public boolean action(Event e,Object obj)
{

repaint();
return true;

}
}

sum.html

<html>

<head><title>Geting input from the User </title>

</head>

<body>

<applet code="InputApplet.class" width=400 height=400 ></applet>

Unit 5: Applets

</body>

</html>

Output:

Before Entering the Input After Entering the input

Part –II: Event Handling

Types of Event Handling Mechanisms

There are two types of Event handling mechanisms supported by Java. First, the approach

supported by Java 1.0, where the generated event is given hierarchically to the objects until it

was handled. This can be also called as Hierarchical Event Handling Model.

Second, the approach supported by Java 1.1, which registers the listeners to the source of

the event and the registered listener processes the event and returns response to the source. This

is called " Event Delegation Model"

The Event Delegation Model

The modern approach to handling events is based on the delegation event model, which

defines standard and consistent mechanisms to generate and process events (1). Its concept is

quite simple: a source (2) generates an event and sends it to one or more listeners (3). In this

scheme, the listener simply waits until it receives an event. Once an event is received, the listener

processes the event and then returns response.

Unit 5: Applets

The advantage of this design is that the application logic that processes events is cleanly

separated from the user interface logic that generates those events. A user interface element is

able to “delegate” the processing of an event to a separate piece of code.

In the delegation event model, listeners must register with a source in order to receive an

event notification. This provides an important benefit: notifications are sent only to listeners that

want to receive them. This is a more efficient way to handle events than the design used by the

old Java 1.0 approach. Previously, an event was propagated up the containment hierarchy until it

was handled by a component. This required components to receive events that they did not

process, and it wasted valuable time. The delegation event model eliminates this overhead.

1. What is an Event?

In the delegation model, an event is an object that describes a state change in a source. It

can be generated as a consequence of a person interacting with the elements in a graphical user

interface.

Examples: Pressing a button, entering a character via the keyboard, selecting an item in a

list, and clicking the mouse etc..

2. Event Sources

A source is an object that generates an event. This occurs when the internal state of that

object changes in some way. Sources may generate more than one type of event. A source must

Unit 5: Applets

register listeners in order for the listeners to receive notifications about a specific type of event.

Each type of event has its own registration method. Here is the general form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For

example, the method that registers a keyboard event listener is called addKeyListener(). The

method that registers a mouse motion listener is called addMouseMotionListener(). When an

event occurs, all registered listeners are notified and receive a copy of the event object. This is

known as multicasting the event. In all cases, notifications are sent only to listeners that register

to receive them.

Some sources may allow only one listener to register. The general form of such a method is this:

public void addTypeListener(TypeListener el) throws java.util.TooManyListenersException

Here, Type is the name of the event, and el is a reference to the event listener. When such

an event occurs, the registered listener is notified. This is known as unicasting the event. A

source must also provide a method that allows a listener to unregister an interest in a specific

type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For

example, to remove a keyboard listener, you would call removeKeyListener(). The methods

that add or remove listeners are provided by the source that generates events. For example, the

Component class provides methods to add and remove keyboard and mouse event listeners.

3. Event Listeners

A listener is an object that is notified when an event occurs. It has two major requirements.

 First, it must have been registered with one or more sources to receive notifications about

specific types of events.

 Second, it must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener interface defines two methods to

receive notifications when the mouse is dragged or moved.

The Event classes

The Event classes represent the event. Java provides us various Event classes but we will discuss

those which are more frequently used.

EventObject class

Unit 5: Applets

It is the root class from which all event state objects shall be derived. All Events are constructed

with a reference to the object, the source, that is logically deemed to be the object upon which

the Event in question initially occurred upon. This class is defined in java.util package.

The summary

 EventObject is a superclass of all events.

 AWTEvent is a superclass of all AWT events that are handled by the delegation event

model.

The package java.awt.event defines many types of events that are generated by various user

interface elements. Table 1 shows several commonly used event classes and provides a brief

description of when they are generated. Commonly used constructors and methods in each class

are described in the following sections

Table 1: List of Event Classes

1. The ActionEvent class

The ActionEvent class defines 5 integer constant and also defines 3 methods.

Integer constants:(instance variable)

ALT_MASK, CTRL_MASK, META_MASK, and SHIFT_MASK , these are used to

identify any modifier associated with an action event.

Methods:

Unit 5: Applets

i. String getActionCommand() - this is used to obtain the command name.

For example when a button is pressed, the button contains the label, this

method is used to obtain that.

ii. int getModifiers() - returns a value that indicates which modifier keys

(ALT, CTRL,META, and/or SHIFT) were pressed when the event was

generated.

iii. long getWhen() -used to get the time when the event took place.

2. The AdjustmentEvent Class

Integer Constants:

An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment

events. The AdjustmentEvent class defines integer constants that can be used to identify

them. The constants and their meanings are shown here:

Methods:
i. Adjustable getAdjustable() - returns the object that generated the event.

ii. int getAdjustmentType() - the type of adjustment event can be obtained by this

method.

iii. int getValue() -the amount of adjustment can be obtained by this method

3. The ComponentEvent Class

A ComponentEvent is generated when the size, position, or visibility of a component is

changed. There are four types of component events. The ComponentEvent class defines

integer constants that can be used to identify them. The constants and their meanings are

shown here:

Method:

Component getComponent() -this is used to return the component that has
generated the event.

Unit 5: Applets

4. The ContainerEvent Class

A ContainerEvent is generated when a component is added to or removed from a

container. There are two types of container events.

Integer Constants:
COMPONENT_ADDED and COMPONENT_REMOVED.

The ContainerEvent class defines int constants that can be used to identify them.

Methods:
i. container getContainer() - used to get the reference of the container that has

generated this event

ii. Component getChild() - used to get the component that has been added or

removed.

5. The FocusEvent Class

A FocusEvent is generated when a component gains or loses input focus.

Integer Constants:

FOCUS_GAINED and FOCUS_LOST.

Methods:

For example, assume that the focus is in a text field. If the user moves the mouse to adjust

a scroll bar, the focus is temporarily lost.) The other component involved in the focus change,

called the opposite component, is passed in other.

i. Component getOppositeComponent()- used to determine the other opposite component.

ii. boolean isTemporary()- used to determine focus is changed temporarily

6. The InputEvent Class

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for

component input events. Its subclasses are KeyEvent and MouseEvent.

Integer Constants:

Methods: these are used determine which key is pressed

i. boolean isAltDown() -
ii. boolean isAltGraphDown()
iii. boolean isControlDown()
iv. boolean isMetaDown()
v. boolean isShiftDown()

7. The ItemEvent Class
An ItemEvent is generated when a check box or a list item is clicked or when a checkable menu
item is selected or deselected.

Unit 5: Applets

Integer Constants:

Methods:
i. Object getItem() –used to get the reference of the item that has generated the event

ii. ItemSelectable getItemSelectable()- used to get reference to the selectable items.

iii. int getStateChange()- return the state change for the event.

8. The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of

key events, which are identified by these integer constants: KEY_PRESSED,

KEY_RELEASED, and KEY_TYPED. The first two events are generated when any

key is pressed or released. The last event occurs only when a character is generated.

Remember, not all keypresses result in characters. For example, pressing SHIFT does not

generate a character.

Integer Constants:

There are many other integer constants that are defined by KeyEvent. For

example, VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents

of the numbers and letters. Here are some others:

Methods:

The KeyEvent class defines several methods, but the most commonly used ones are

getKeyChar(), which returns the character that was entered, and getKeyCode(), which returns

the key code. Their general forms are shown here:

char getKeyChar()
int getKeyCode()

9. The MouseEvent Class

There are eight types of mouse events. The MouseEvent class defines the following integer

constants that can be used to identify them:

Integer Constants:

Unit 5: Applets

Methods:

Two commonly used methods in this class are getX() and getY(). These return the X

and Y coordinates of the mouse within the component when the event occurred. Their forms are

shown here:

i. int getX() – used to get the X coordinate

ii. int getY() –used to get the Y coordinate

iii. Point getPoint() –used to obtain the coordinates of the mouse

iv. getClickCount() - method obtains the number of mouse clicks for this event. Its

signature is shown here:

v. isPopupTrigger() - method tests if this event causes a pop-up menu to appear on this

platform

Java SE 6 added three methods to MouseEvent that obtain the coordinates of the mouse relative

to the screen rather than the component. They are shown here:

Point getLocationOnScreen()

int getXOnScreen()

int getYOnScreen()

10. The MouseWheelEvent Class

The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of

MouseEvent. Not all mice have wheels. If a mouse has a wheel, it is located between the left

and right buttons. Mouse wheels are used for scrolling. MouseWheelEvent defines these two

integer constants:

Methods:

MouseWheelEvent defines methods that give you access to the wheel event. To obtain the number of
rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved counterclockwise. If the value
is negative, the wheel moved clockwise. To obtain the type of scroll, call getScrollType(), shown next:

Unit 5: Applets

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL. If the scroll type is
WHEEL_UNIT_SCROLL, you can obtain the number of units to scroll by calling getScrollAmount(). It is

shown here:

int getScrollAmount()

11. The TextEvent Class

Instances of this class describe text events. These are generated by text fields and text areas when

characters are entered by a user or program.

TextEvent defines the integer constant:

TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is specified

by type.

12. The WindowEvent Class

There are ten types of window events. TheWindowEvent class defines integer constants that

can be used to identify them. The constants and their meanings are shown here:

Integer Constants:

Methods:
Acommonly used method in this class is getWindow(). It returns the Window object that generated the event.

Its general form is shown here:

Window getWindow()

WindowEvent also defines methods that return the opposite window (when a focus or activation event has
occurred), the previous window state, and the current window state. These methods are shown here:

Window getOppositeWindow()
int getOldState()
int getNewState()

Unit 5: Applets

Event Sources
The following are the event source classes, that actually generate the event.

Event Listener Interfaces

As explained, the delegation event model has two parts: sources and listeners. Listeners are

created by implementing one or more of the interfaces defined by the java.awt.event package.

When an event occurs, the event source invokes the appropriate method defined by the listener

and provides an event object as its argument.

The ActionListener Interface

This interface defines the actionPerformed() method that is invoked when an action event

Unit 5: Applets

occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface

This interface defines the adjustmentValueChanged() method that is invoked when an

adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface
This interface defines four methods that are invoked when a component is resized, moved,
shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)

void componentMoved(ComponentEvent ce)

void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

The ContainerListener Interface

This interface contains two methods. When a component is added to a container,

componentAdded() is invoked. When a component is removed from a container,

componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)

void componentRemoved(ContainerEvent ce)

The FocusListener Interface

This interface defines two methods. When a component obtains keyboard focus, focusGained()

is invoked. When a component loses keyboard focus, focusLost() is called. Their general

forms are shown here:

void focusGained(FocusEvent fe)

void focusLost(FocusEvent fe)

The ItemListener Interface

This interface defines the itemStateChanged() method that is invoked when the state of an item

changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

The KeyListener Interface

Unit 5: Applets

This interface defines three methods. The keyPressed() and keyReleased() methods are

invoked when a key is pressed and released, respectively. The keyTyped() method is invoked

when a character has been entered. For example, if a user presses and releases the A key, three

events are generated in sequence: key pressed, typed, and released. If a user presses and releases

the HOME key, two key events are generated in sequence: key pressed and released.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)

void keyReleased(KeyEvent ke)

void keyTyped(KeyEvent ke)

The MouseListener Interface

This interface defines five methods. If the mouse is pressed and released at the same point,

mouseClicked() is invoked. When the mouse enters a component, the mouseEntered() method

is called. When it leaves, mouseExited() is called. The mousePressed() and mouseReleased()

methods are invoked when the mouse is pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
This interface defines two methods. The mouseDragged() method is called multiple times as
the mouse is dragged. The mouseMoved() method is called multiple times as the mouse is

moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

The MouseWheelListener Interface
This interface defines the mouseWheelMoved() method that is invoked when the mouse wheel
is moved. Its general form is shown here:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface

This interface defines the textChanged() method that is invoked when a change occurs

in a text area or text field. Its general form is shown here:

Unit 5: Applets

void textChanged(TextEvent te)

The WindowFocusListener Interface

This interface defines two methods: windowGainedFocus() and windowLostFocus(). These

are called when a window gains or loses input focus. Their general forms are shown here:

void windowGainedFocus(WindowEvent we)

void windowLostFocus(WindowEvent we)

The WindowListener Interface

This interface defines seven methods. The windowActivated() and windowDeactivated()

methods are invoked when a window is activated or deactivated, respectively. If a window is

iconified, the windowIconified() method is called. When a window is deiconified, the

windowDeiconified() method is called. When a window is opened or closed, the

windowOpened() or windowClosed() methods are called, respectively. The windowClosing()

method is called when a window is being closed. The general forms of these methods are

void windowActivated(WindowEvent we)

void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

void windowDeiconified(WindowEvent we)

void windowIconified(WindowEvent we)

void windowOpened(WindowEvent we)

Using the Delegation Model for Handling the Mouse Events

To handle mouse events, you must implement the MouseListener and the

MouseMotionListener interfaces. It displays the current coordinates of the mouse in the

applet’s status window. Each time a button is pressed, the word “Down” is displayed at the

location of the mouse pointer. Each time the button is released, the word “Up” is shown. If a

button is clicked, the message “Mouse clicked” is displayed in the upper left corner of the applet

display area

As the mouse enters or exits the applet window, a message is displayed in the upper-left

corner of the applet display area. When dragging the mouse, a * is shown, which tracks with the

mouse pointer as it is dragged. Notice that the two variables, mouseX and mouseY, store the

location of the mouse when a mouse pressed, released, or dragged event occurs. These

coordinates are then used by paint() to display output at the point of these occurrences.

Unit 5: Applets

Example program for Handling Mouse Events

// Demonstrate the mouse event handlers.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="MouseEvents" width=300 height=100>

</applet>

*/

public class MouseEvents extends Applet

implements MouseListener, MouseMotionListener

{

String msg = "";

int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init()

{

addMouseListener(this);

addMouseMotionListener(this);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse clicked.";

repaint();

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me)

{

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse entered.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent me)

{

// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse exited.";

repaint();

}

Unit 5: Applets

// Handle button pressed.

public void mousePressed(MouseEvent me)

{

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me)

{

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "*";

showStatus("Dragging mouse at " + mouseX + ", " + mouseY);

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me)

{

// show status

showStatus("Moving mouse at " + me.getX() + ", " +

me.getY());

}

// Display msg in applet window at current X,Y location.

public void paint(Graphics g)

{

g.drawString(msg, mouseX, mouseY);

}

}

Unit 5: Applets

OutPut:

Adapter Classes

Java provides a special feature, called an adapter class, that can simplify the creation of

event handlers in certain situations. An adapter class provides an empty implementation of all

methods in an event listener interface. Adapter classes are useful when you want to receive and

process only some of the events that are handled by a particular event listener interface. You can

define a new class to act as an event listener by extending one of the adapter classes and

implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and

mouseMoved(), which are the methods defined by the MouseMotionListener interface. If you

were interested in only mouse drag events, then you could simply extend MouseMotionAdapter

and override mouseDragged(). The empty implementation of mouseMoved() would handle the

mouse motion events for you.

The Following table provide the commonly used adapter classes:

Unit 5: Applets

Example program using the Adapter Class

// Demonstrate an adapter.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter(this));

addMouseMotionListener(new MyMouseMotionAdapter(this));

}

}

class MyMouseAdapter extends MouseAdapter

{

AdapterDemo adapterDemo;

public MyMouseAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{

adapterDemo.showStatus("Mouse clicked");

}

}

Unit 5: Applets

class MyMouseMotionAdapter extends MouseMotionAdapter

{

AdapterDemo adapterDemo;

public MyMouseMotionAdapter(AdapterDemo adapterDemo)

{

this.adapterDemo = adapterDemo;

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{

adapterDemo.showStatus("Mouse dragged");

}

}

Inner Classes

An inner class is a class defined within another class, or even within an expression.

Example program:

// Inner class demo.

import java.applet.*;

import java.awt.event.*;

/*

<applet code="InnerClassDemo" width=200 height=100>

</applet>

*/

public class InnerClassDemo extends Applet

{

public void init()

{

addMouseListener(new MyMouseAdapter());

}

//inner class

class MyMouseAdapter extends MouseAdapter

{

//overriding the mousePressed() method

public void mousePressed(MouseEvent me)

{

showStatus("Mouse Pressed");

}

}

}

Unit 5: Applets

OutPut:

***************************End of 5
th

UNIT************************************

