
Unit 2: Java Basics

Topics to be covered:

UNIT – 2

Java Basics: Data types, variables, identifiers, Keywords, Literals, Operators, Exceptions,

Precedence Rules and Associativity, Type Conversion and Casting, Flow of Control: Branching,

Conditional, Loops, classes and objects, creating objects, methods, constructors, constructor-

overloading, Cleaning up unused objects and garbage collection, overloading methods and

constructors, Class variables and methods, Static keyword, this keyword, Arrays and command

line arguments

Data Types
Java is strongly typed language. The safety and robustness of the Java language is in fact
provided by its strict type. There are two reasons for this: First, every variable and expression

must be defined using any one of the type. Second, the parameters to the method also should

have some type and also verified for type compatibility. Java language 8 primitive data types:

The primitive data types are: char, byte, short, int, long, float, double, boolean. These are again

grouped into 4 groups.

1. Integer Group: The integer group contains byte, short, int, long. These data types will

need different sizes of the memory. These are assigned positive and negative values. The

width and ranges of these values are as follow:

byte:
The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to 127.
Variables of type byte are especially useful when you’re working with a stream of data from a

network or file. They are also useful when you’re working with raw binary data that may not be

directly compatible with Java’s other built-in types. Byte variables are declared by use of the

byte keyword.

For example, the following declares two byte variables called b and c:

byte b, c;

short:

short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-used

Java type. Here are some examples of short variable declarations:

short s;

short t;

Unit 2: Java Basics

int:

The most commonly used integer type is int. It is a signed 32-bit type that has a range from –

2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are commonly

employed to control loops and to index arrays. We can store byte and short values in an int.

Example

int x=12;

long:
long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value. The range of a long is quite large. This makes it useful when

big, whole numbers are needed.

Example

long x=123456;

2. Floating-Point Group

Floating-point numbers, also known as real numbers, are used when evaluating expressions that
require fractional precision. These are used with operations such as square root, cosine, and sine

etc. There are two types of Floating-Point numbers: float and double. The float type represents

single precision and double represents double precision. Their width and ranges are as follows:

float:

The type float specifies a single-precision value that uses 32 bits of storage. Single precision is

faster on some processors and takes half as much space as double precision. Variables of type

float are useful when you need a fractional component, but don’t require a large degree of

precision.

Example:

float height, price;

double:

Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double

precision is actually faster than single precision on some modern processors that have been

optimized for high-speed mathematical calculations. All the math functions, such as sin(), cos(),

and sqrt(), return double values.

Example:
double area,pi;

Example program to calculate the area of a circle

Unit 2: Java Basics

import java.io.*;

class Circle

{

public static void main(String args[])

{

double r,area,pi;

r=12.3;

pi=3.14;

area=pi*r*r;

System.out.println("The Area of the Circle is:"+area);

}

}

3. Characters Group
In Java, the data type used to store characters is char. However, C/C++ programmers beware:
char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This is not the

case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a fully

international character set that can represent all of the characters found in all human languages.

Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no negative chars. The

standard set of characters known as ASCII still ranges from 0 to 127 as always, and the extended

8-bit character set, ISO-Latin-1, ranges from 0 to 255.

Here is a program that demonstrates char variables:

// Demonstrate char data type.

class CharDemo

{

public static void main(String args[])

{

char ch1, ch2;

ch1 = 88; // code for X

ch2 = 'Y';

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

}

}

4. Booleans

Java has a primitive type, called boolean, for logical values. It can have only one of two possible

values, true or false. This is the type returned by all relational operators, as in the case of a < b.

Here is a program that demonstrates the boolean type:
// Demonstrate boolean values.
class BoolTest

Unit 2: Java Basics

{

public static void main(String args[])

{

boolean b;

b = false;

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement

if(b) System.out.println("This is executed.");

b = false;

if(b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value

System.out.println("10 > 9 is " + (10 > 9));

}

}

Identifiers

Identifiers are used for class names, method names, and variable names. An identifier may be

any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore and

dollar-sign characters. They must not begin with a number, lest they be confused with a numeric

literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value. Some

examples of valid identifiers are:

Average Height A1 Area_Circle

Invalid Identifiers are as follow:

2types Area-circle Not/ok

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the

combination of an identifier, a type, and an optional initializer. In addition, all variables have a

scope, which defines their visibility, and a lifetime.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable

declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

Here the type is any primitive data types, or class name. The identifier is the name of the

variable. We can initialize the variable by specifying the equal sign and value.

Example

Unit 2: Java Basics

int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints, initializing
// d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; //the variable x ahs the value 'x'

Dynamic Initialization of the variable
We can also assign a value to the variable dynamically as follow:

int x=12;
int y=13;
float z=Math.sqrt(x+y);

The Scope and Lifetime of Variables

 Java allows, to declare a variable within any block.
 A block begins with opening curly brace and ended with end curly brace.
 Thus, each time we start new block, we create new scope.
 A scope determines what objects are visible to parts of your program. It also

determines the life time of the objects.
 Many programming languages define two scopes: Local and Global
 As a general rule a variable defined within one scope, is not visible to code defined

outside of the scope.
 Scopes can be also nested. The variable defined in outer scope are visible to the inner

scopes, but reverse is not possible.
Example code

void function1()
{//outer block

int a;

//here a,b,c are visible to the inner scope

int a=10;

if(a==10)

{// inner block

int b=a*20;

int c=a+30;

}//end of inner block

b=20*2;

// b is not known here, which declared in inner scope

}//end of the outer block

Literals

A constant value can be created using a literal representation of it. Here are some literals:

int x=25; char ch=88; flaot f=12.34 byte b=12;

Comments

Unit 2: Java Basics

In java we have three types of comments: single line comment, Multiple line comment, and

document type comment.

Single line comment is represented with // (two forward slashes), Multiple comment lines

represented with /*………….*/ (slash and star), and the document comment is represented with

/**……….*/.

Separators

In Java, there are a few characters that are used as separators. The most commonly used

separator in Java is the semicolon. As you have seen, it is used to terminate statements. The

separators are shown in the following table:

The Java Keywords
There are 50 keywords currently defined in the Java language (see Table bellow). These
keywords, combined with the syntax of the operators and separators, form the foundation of the

Java language. These keywords cannot be used as names for a variable, class, or method.

Operators

Unit 2: Java Basics

Java provides a rich operator environment. Most of its operators can be divided into the

following four groups: arithmetic, bitwise, relational, and logical. Java also defines some

additional operators that handle certain special situations.

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are used in

algebra. The following table lists the arithmetic operators:

The operands of the arithmetic operations are of numeric type. The Boolean operands are not

allowed to perform arithmetic operations. The basic arithmetic operators are: addition,

subtraction, multiplication, and division.

Example program to perform all the arithmetic operations

Arith.java
import java.io.*;

class Arith

{

public static void main(String args[])

{

int a,b,c,d;

a=5;

b=6;

//arithmetic addition

c=a+b;

System.out.println("The Sum is :"+c);

//aritmetic subtraction

d=a-b;

System.out.println("The Subtractio is :"+d);

//arithmetic division

c=a/b;

System.out.println("The Dision is :"+c);

Unit 2: Java Basics

//arithmetic multiplication

d=a*b;

System.out.println("The multiplication is :"+d);

}

}

The Modulus Operator

The modulus operator, %, returns the remainder of a division operation. It can be applied to

floating-point types as well as integer types. The following demonstrates the %

// Demonstrate the % operator.

class Modulus

{

Modulus.java

public static void main(String args[])

{

int x = 42;

double y = 42.25;

System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 10 = " + y % 10);

}

}

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with an

assignment. As you probably know, statements like the following are quite common in

programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements perform the same

action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

Increment and Decrement

Unit 2: Java Basics

The ++ and the – – are Java’s increment and decrement operators. The increment operator

increases its operand by one. The decrement operator decreases its operand by one. For example,

this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

is equivalent to

x--;

Note: If we write increment/decrement operator after the operand such expression is called post

increment decrement expression, if written before operand such expression is called pre

increment/decrement expression

The following program demonstrates the increment and decrement operator.

IncDec.java

// Demonstrate ++ and --

class IncDec

{

public static void main(String args[])

{

int a = 1;

int b = 2;

int c;

int d;

c = ++b; //pre increment

d = a--; //post decrement

c++; //post increment

d--; //post decrement

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

}

}

The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int, short,

char, and byte. These operators act upon the individual bits of their operands. They are

summarized in the following table:

Unit 2: Java Basics

These operators are again classified into 3 categories: Logical operators, Shift operators, and

Relational operator

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of each operation. The
bitwise operators are applied to each individual bit within each operand.

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all
other cases. Here is an example:

00101010 42

& 00001111 15

00001010 10

Unit 2: Java Basics

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then

the resultant bit is a 1, as shown here:

00101010 42

| 00001111 15

00101111 47

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1.

Otherwise, the result is zero. The following example shows the effect of the ^. This example

also demonstrates a useful attribute of the XOR operation. Notice how the bit pattern of 42

is inverted wherever the second operand has a 1 bit. Wherever the second operand has a 0 bit,

the first operand is unchanged. You will find this property useful when performing some

types of bit manipulations.

00101010 42

^ 00001111 15

00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

BitLogic.java
// Demonstrate the bitwise logical operators.

class BitLogic

{

public static void main(String args[])

{

int a = 3; // 0 + 2 + 1 or 0011 in binary

int b = 6; // 4 + 2 + 0 or 0110 in binary

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b) | (a & ~b); int

g = ~a & 0x0f;

System.out.println(" a|b = " +c);

System.out.println(" a&b = " +d);

System.out.println(" a^b = " +e);

System.out.println("~a&b|a&~b = " + f);

System.out.println(" ~a = " + g);

}

}

Shift Operators: (left shift and right shift)

Unit 2: Java Basics

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.

It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<

moves all of the bits in the specified value to the left by the number of bit positions specified by

num.

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of

times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to left-shift the value in value. That is, the >>

moves all of the bits in the specified value to the right by the number of bit positions specified by

num.

class ShiftBits

{

ShiftBits.java

public static void main(String args[])

{

byte b=6;

int c,d;

//left shift

c=b<<2;

//right shift

d=b>>3;

System.out.println("The left shift result is :"+c);

System.out.println("The right shift result is :"+d);

}

}

Relational Operators

The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering. The relational operators are shown here:

Unit 2: Java Basics

The outcome of these operations is a boolean value. The relational operators are most frequently

used in the expressions that control the if statement and the various loop statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans can be

compared using the equality test, ==, and the inequality test, !=. Notice that in Java equality is

denoted with two equal signs, not one. (Remember: a single equal sign is the assignment

operator.) Only numeric types can be compared using the ordering operators. That is, only

integer, floating-point, and character operands may be compared to see which is greater or less

than the other.

Short-Circuit Logical Operators (|| and &&)

Java provides two interesting Boolean operators not found in many other computer languages.

These are secondary versions of the Boolean AND and OR operators, and are known as short-

circuit logical operators.

When we use || operator if left hand side expression is true, then the result will be true, no matter

what is the result of right hand side expression. In the case of && if the left hand side expression

results true, then only the right hand side expression is evaluated.

Example 1: (expr1 || expr2) Example2: (expr1 && expr2)

The Assignment Operator

The assignment operator is the single equal sign, =. The assignment operator works in Java

much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression. The assignment operator

does have one interesting attribute that you may not be familiar with: it allows you to create a

chain of assignments. For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

Unit 2: Java Basics

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-else

statements. This operator is the ?. It can seem somewhat confusing at first, but the ? can be used

very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is

true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?

operation is that of the expression evaluated. Both expression2 and expression3 are required to

return the same type, which can’t be void. Here is an example of the way that the ? is employed:

class Test

{

public static void main(String args[])

{

Test.java

int x=4,y=6;

int res= (x>y)?x:y;
System.out.println("The result is :"+res);

}

}

Operator Precedence

Table shows the order of precedence for Java operators, from highest to lowest. Notice that the

first row shows items that you may not normally think of as operators: parentheses, square

brackets, and the dot operator. Technically, these are called separators, but they act like

operators in an expression. Parentheses are used to alter the precedence of an operation. As you

know from the previous chapter, the square brackets provide array indexing. The dot operator is

used to dereference objects.

Unit 2: Java Basics

Using Parentheses
Parentheses raise the precedence of the operations that are inside them. This is often necessary to
obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression

can be rewritten using redundant parenthees like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you will

need to parenthesize the expression like this:

(a >> b) + 3

1. Control Statements

The control statements are used to control the flow of execution and branch based on the status

of a program. The control statements in Java are categorized into 3 categories:

i. Selection statements

ii. Iteration statements

iii. Jump statements.

Unit 2: Java Basics

i. The selection statements include: if and switch. These are used to choose different

paths of execution based on the outcome of the conditional expression.

if statement: This is the Java's conditional branch statement. This is used to route the execution

through two different paths. The general form of the if statement will be as follow:

if (conditional expression)

{

}

else

{

}

statement1

statement2

Here the statements inside the block cane single statement or multiple statements. The

conditional expression is any expression that returns the Boolean value. The else clause is

optional. The if works as follows: if the conditional expression is true, then statement1 will be

executed. Otherwise statement2 will be executed.

Example:

Write a java program to find whether the given number is even or odd?

import java.io.*;
classs EvenOdd
{

EvenOdd.java

public static void main(String args[])
{

int n;
System.out.println("Enter the value of n");
DataInputStream dis=new DataInputStream(System.in);
n=Integer.parseInt(dis.readLine());
if(n%2==0)
{

}
else
{

}

}
}

System.out.println(n+" is the Even Number");

System.out.println(n+" is the ODD Number");

Unit 2: Java Basics

Nested if: The nested if statement is an if statement, that contains another if and else inside it.

The nested if are very common in programming. When we nest ifs, the else always associated

with the nearest if.

The general form of the nested if will be as follow:

if(conditional expresion1)
{

if(conditional expression2)
{

}
else
{

}
else
{

}

statements1;

satement2;

statement3;
}
Example program:

Write a java Program to test whether a given number is positive or negative.

Positive.java
import java.io.*;

class Positive

{

public static void main(String args[]) throws IOException

{

int n;

DataInputStream dis=new DataInputStream(System.in);

n=Integer.parseInt(dis.readLine());

if(n>-1)

{

if(n>0)

System.out.println(n+ " is positive no");

}

else

System.out.println(n+ " is Negative no");

}

}

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the

if-else-if ladder. It looks like this:

if(condition)

Unit 2: Java Basics

statement;

else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

The if statements are executed from the top down. As soon as one of the conditions controlling

the if is true, the statement associated with that if is executed, and the rest of the ladder is

bypassed. If none of the conditions is true, then the final else statement will be executed.

Example Program:

Write a Java Program to test whether a given character is Vowel or Consonant?

Vowel.java
import java.io.*;

class Vowel

{

public static void main(String args[]) throws IOException

{

char ch;
ch=(char)System.in.read();

if(ch=='a')
System.out.println("Vowel");

else if(ch=='e')
System.out.println("Vowel");

else if(ch=='i')

System.out.println("Vowel");
else if(ch=='o')

System.out.println("Vowel");
else if(ch=='u')

System.out.println("Vowel");
else

System.out.println("consonant");

}

}

The Switch statement

Unit 2: Java Basics

The switch statement is Java’s multiway branch statement. It provides an easy way to dispatch

execution to different parts of your code based on the value of an expression. As such, it often

provides a better alternative than a large series of if-else-if statements. Here is the general form

of a switch statement:

switch (expression)

{

...

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

case valueN:

// statement sequence
break;

default:

}

// default statement sequence

The expression must be of type byte, short, int, or char; each of the values specified in the case

statements must be of a type compatible with the expression. Each case value must be a unique

literal (that is, it must be a constant, not a variable). Duplicate case values are not allowed.

The switch statement works like this: The value of the expression is compared with each of the

literal values in the case statements. If a match is found, the code sequence following that case

statement is executed. If none of the constants matches the value of the expression, then the

default statement is executed. However, the default statement is optional. If no case matches

and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When a break

statement is encountered, execution branches to the first line of code that follows the entire

switch statement. This has the effect of ―jumping out‖ of the switch.

Write a Java Program to test whether a given character is Vowel or Consonant? (Using

Switch)

import java.io.*;

class SwitchTest

{

SwitchTest.java

public static void main(String args[]) throws IOException

{

char ch;

ch=(char)System.in.read();

Unit 2: Java Basics

switch(ch)

{

//test for small letters

case 'a': System.out.println("vowel");

break;

case 'e': System.out.println("vowel");

break;

case 'i': System.out.println("vowel");

break;

case 'o': System.out.println("vowel");

break;

case 'u': System.out.println("vowel");

break;

//test for capital letters

case 'A': System.out.println("vowel");

break;

default: System.out.println("Consonant");

}

}

}

The break statement is optional. If you omit the break, execution will continue on into the next

case. It is sometimes desirable to have multiple cases without break statements between them.

For example, consider the following program.

class Switch

{

public static void main(String args[])

{

int month = 4;

String season;

switch (month)

{

case 12:

case 1:

case 2: season = "Winter";

break;

case 3:

case 4:

case 5: season = "Spring";

break;

case 6:

case 7:

case 8: season = "Summer";

break;

Unit 2: Java Basics

case 9:

case 10:

case 11: season = "Autumn";

break;

default: season = "Bogus Month";

}

System.out.println("April is in the " + season + ".");

}

}

Nested switch Statements

You can use a switch as part of the statement sequence of an outer switch. This is called a nested

switch. Since a switch statement defines its own block, no conflicts arise between the case

constants in the inner switch and those in the outer switch. For example, the following fragment

is perfectly valid:

switch(expression) //outer switch

{

case 1: switch(expression) // inner switch

{

case 4: //statement sequence

break;

case 5: //statement sequence

break;

} //end of inner switch

break;

case 2: //statement sequence

break;

default: //statement sequence

} //end of outer switch

There are three important features of the switch statement to note:

o The switch differs from the if in that switch can only test for equality, whereas if can

evaluate any type of Boolean expression. That is, the switch looks only for a match

between the value of the expression and one of its case constants.

o No two case constants in the same switch can have identical values. Of course, a

switch statement and an enclosing outer switch can have case constants in common.

o A switch statement is usually more efficient than a set of nested ifs.

2. Iteration Statements

Unit 2: Java Basics

Java’s iteration statements are for, while, and do-while. These statements create what we

commonly call loops. As you probably know, a loop repeatedly executes the same set of

instructions until a termination condition is met.

i. while

The while loop is Java’s most fundamental loop statement. It repeats a statement or block

while its controlling expression is true. Here is its general form:

while(condition)

{

// body of loop

increment or decrement statement

}

The condition can be any Boolean expression. The body of the loop will be executed as long as

the conditional expression is true. When condition becomes false, control passes to the next line

of code immediately following the loop. The curly braces are unnecessary if only a single

statement is being repeated.

Example program:

Write a java program to add all the number from 1 to 10.

WhileTest.java
import java.io.*;

class WhileTest

{

public static void main(String args[])

{

int i=1,sum=0;

while(i<=10)

{

sum=sum+i;

i++;

}

System.out.println("The sum is :"+sum);

}

}

ii. do-while statement

However, sometimes it is desirable to execute the body of a loop at least once, even if the

conditional expression is false to begin with. In other words, there are times when you would like

to test the termination expression at the end of the loop rather than at the beginning.

Unit 2: Java Basics

Fortunately, Java supplies a loop that does just that: the do-while. The do-while loop always

executes its body at least once, because its conditional expression is at the bottom of the loop. Its

general form is:

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the

conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop

terminates. As with all of Java’s loops, condition must be a Boolean expression.

Example program:

Write a java program to add all the number from 1 to 10. (using do-while)

WhileTest.java
import java.io.*;
class WhileTest

{

public static void main(String args[])

{

int i=1,sum=0;

do

{

sum=sum+i;

i++;

} while(i<=10);

System.out.println("The sum is :"+sum);

}

}

Note 1: Here the final value of the i will be 11. Because the body is executed first, then the

condition is verified at the end.

Note 2: The do-while loop is especially useful when you process a menu selection, because you

will usually want the body of a menu loop to execute at least once.

Example program: Write a Java Program to perform various operations like addition,

subtraction, and multiplication based on the number entered by the user. And Also Display

the Menu.

import java.io.*;

class DoWhile

{

DoWhile.java

public static void main(String args[]) throws IOException

{

int n,sum=0,i=0;

Unit 2: Java Basics

DataInputStream dis=new DataInputStream(System.in);

do

{

System.out.println("Enter your choice");

System.out.println("1 Addition");

System.out.println("2 Subtraction");

System.out.println("3 Multiplicaton");

n=Integer.parseInt(dis.readLine());

System.out.println("Enter two Numbers");

int a=Integer.parseInt(dis.readLine());

int b =Integer.parseInt(dis.readLine());

int c;

switch(n)

{

case 1: c=a+b;

System.out.println("The addition is :"+c);

break;

case 2: c=a-b;

System.out.println("The addition is :"+c);

break;

case 3: c=a*b;

System.out.println("The addition is :"+c);

break;

default:System.out.println("Enter Correct Number");

}

} while(n<=3);

}

}

iii. for statement

You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a

powerful and versatile construct. Beginning with JDK 5, there are two forms of the for loop. The

first is the traditional form that has been in use since the original version of Java. The second is

the new ―for-each‖ form. Both types of for loops are discussed here, beginning with the

traditional form. Here is the general form of the traditional for statement:

for(initialization; condition; iteration)

{

// body

}

Unit 2: Java Basics

The for loop operates as follows. When the loop first starts, the initialization portion of the loop

is executed. Generally, this is an expression that sets the value of the loop control variable,

which acts as a counter that controls the loop. It is important to understand that the initialization

expression is only executed once. Next, condition is evaluated. This must be a Boolean

expression. It usually tests the loop control variable against a target value. If this expression is

true, then the body of the loop is executed. If it is false, the loop terminates.

Example program: same program using the for loop

import java.io.*;

class ForTest

{

ForTest.java

public static void main(String args[])

{

int i, sum=0;

for(i=1;i<=10;i++)

{

sum=sum+i;

}

System.out.println("The sum is :"+sum);

}

}

There are some important things about the for loop
1. The initialization of the loop controlling variables can be done in side the for loop.

Example:

for(int i=1;i<=10;i++)
2. We can write any boolean expression in the place of the condition for second part the

loop.

Example: where b is a boolean data type

boolean b=false;

for(int i=1; !b;i++)

{

//body of the loop

b=true;

}
This loop executes until the b is set to the true;

3. We can also run the loop infinitely, just by leaving all the three parts empty.

Example:

for(; ;)

{

//body of the loop

}

Unit 2: Java Basics

For each version of the for loop:

The for loop also provides another version, which is called Enhanced Version of the for loop.

The general form of the for loop will be as follow:

for(type itr_var:collection)

{

//body of the loop

}
Here, type is the type of the iterative variable of that receives the elements from collection, one

at a time, from beginning to the end. The collection is created sung the array.

Example program:

Write a java program to add all the elements in an array?

ForEach.java
import java.io.*;

class ForEach

{

public static void main(String args[])

{

int i, a[], sum=0;

a=new int[10];

a={12,13,14,15,16};

for(int x:a)

{

sum=sum+x;

}

System.out.println("The sum is :"+sum);

}

}

3. The Jump Statements

Java supports three jump statements: break, continue, and return. These statements transfer

control to another part of your program.

i. break statement

In Java, the break statement has three uses. First, as you have seen, it terminates a statement

sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used as

a ―civilized‖ form of goto.

Using break to Exit a Loop
By using break, you can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop. When a break statement is

Unit 2: Java Basics

encountered inside a loop, the loop is terminated and program control resumes at the next

statement following the loop. Here is a simple example:

// Using break to exit a loop.

class BreakLoop

{

public static void main(String args[])

{

for(int i=0; i<100; i++)

{

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

Using break as a Form of Goto

In addition to its uses with the switch statement and loops, the break statement can also be

employed by itself to provide a ―civilized‖ form of the goto statement. For example, the goto

can be useful when you are exiting from a deeply nested set of loops. To handle such situations,

Java defines an expanded form of the break statement. By using this form of break, you can,

for example, break out of one or more blocks of code.

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a

stand-alone block of code but it can also be a block that is the target of another statement. When

this form of break executes, control is transferred out of the named block. The labeled block

must enclose the break statement, but it does not need to be the immediately enclosing bloc.

To name a block, put a label at the start of it. A label is any valid Java identifier followed

by a colon. Once you have labeled a block, you can then use this label as the target of a break

statement.

Example code:

class Break

{

public static void main(String args[])

{

Unit 2: Java Basics

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if(t) break second; // break out of second block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

Running this program generates the following output:

Before the break.

This is after second block.

ii. continue statement
Sometimes it is useful to force an early iteration of a loop. That is, you might want to continue
running the loop but stop processing the remainder of the code in its body for this particular

iteration. In while and do-while loops, a continue statement causes control to be transferred

directly to the conditional expression that controls the loop. In a for loop, control goes first to the

iteration portion of the for statement and then to the conditional expression. For all three loops,

any intermediate code is bypassed. Here is an example program that uses continue to cause two

numbers to be printed on each line:

// Demonstrate continue.

class Continue

{

public static void main(String args[])

{

for(int i=1; i<=10; i++)

{

if (i%5 == 0) continue;

System.out.print(i + " ,");}

}

}

Here all the numbers from 1 to 10 except 5 are printed. as 1,2,3,4,6,7,8,9,10.

Unit 2: Java Basics

iii. return statement
The last control statement is return. The return statement is used to explicitly return from
a method. That is, it causes program control to transfer back to the caller of the method.

As such, it is categorized as a jump statement.

Example code

class Test

{

p s v main(String args[]) // caller of the method

{

int a=3,b=4;

int x=method(a,b);

System.out.println("The sum is :"+x);

}

int method(int x,int y) // called method

{

return (x+y);

}

}

After computing the result the control is transferred to the caller method, that main in this case.

Type Conversion and casting

There are two types of conversion. They are Implicit Conversion, Explicit Conversion.

Implicit Conversion

In the case of the implicit conversion type conversion is automatically performed by java when

the types of compatible. For example, the int can be assigned to long. The byte cane assigned to

short. However, all the types are compatible, thus all the type conversions are implicitly

allowed. For example, double is not compatible with byte.

Conditions for automatic conversion

1. the two types must be compatible

2. the destination type must be larger than the source type

When automatic type conversion takes place the widening conversion takes place. For example,

int a; //needs 32 bits

byte b=45; //needs the 8 bits

a=b; // here 8 bits data is placed in 32 bit storage. Thus widening takes place.

Explicit Conversion

Fortunately, it is still possible obtain the conversion between the incompatible types. This is

called explicit type conversion. Java provides a special keyword "cast" to facilitate explicit

conversion. For example, sometimes we want to assign int to byte, this will not be performed

Unit 2: Java Basics

automatically, because byte is smaller than int. This kind of conversion is sometimes called

"narrowing conversion". Since, you are explicitly making the value narrow. The general form of

the cast will be as follow:

destination_variable=(target type) value;

Here the target type specifies the destination type to which the value has to be converted.

Example

int a=1234;

byte b=(byte) a;

The above code converts the int to byte. If the integer value is larger than the byte, then it will be

reduced to modulo byte's range.

import java.io.*;

class casttest

{

casttest.java

public static void main(String args[])

{

int a=258;

byte b;

b=(byte) a;

System.out.print(" The result is :" +b);

}

}

output:

Unit 2: Java Basics

A different type of conversion will occur when a floating-point value is assigned to an

integer type: truncation. As you know, integers do not have fractional components. Thus, when

a floating-point value is assigned to an integer type, the fractional component is lost. For

example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1. The 0.23

will have been truncated.

Automatic Type Promotion in Expressions

The expression contains the three things: operator, operand and literals (constant). In an

expression, sometimes the sub expression value exceeds the either operand.

For example, examine the following expression:

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

The result of the intermediate term a * b easily exceeds the range of either of its byte operands.

To handle this kind of problem, Java automatically promotes each byte, short, or char operand

to int when evaluating an expression. This means that the subexpression a * b is performed

using integers—not bytes. Thus, 2,000, the result of the intermediate expression, 50 * 40, is legal

even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time errors. For

example, this seemingly correct code causes a problem:

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte variable.

However, because the operands were automatically promoted to int when the expression was

evaluated, the result has also been promoted to int. Thus, the result of the expression is now of

type int, which cannot be assigned to a byte without the use of a cast.

In cases where you understand the consequences of overflow, you should use an explicit

cast, such as

byte b = 50;

b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows: First,

Unit 2: Java Basics

all byte, short, and char values are promoted to int, as just described. Then, if one operand is a

long, the whole expression is promoted to long. If one operand is a float, the entire expression is

promoted to float. If any of the operands is double, the result is double.

Introduction to Arrays

An Array is a collection of elements that share the same type and name. The elements from the

array can be accessed by the index. To create an array, we must first create the array variable of

the desired type. The general form of the One Dimensional array is as follows:

type var_name[];

Here type declares the base type of the array. This base type determine what type of elements

that the array will hold.

Example:

int month_days[];

Here type is int, the variable name is month_days. All the elements in the month are integers.

Since, the base type is int.

In fact, the value of month_days is set to null, which represents an array with no value. To link

month_days with an actual, physical array of integers, you must allocate one using new and

assign it to month_days. new is a special operator that allocates memory.

The general form of new as it applies to one-dimensional arrays appears as follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements in the

array, and array-var is the array variable that is linked to the array. That is, to use new to allocate

an array, you must specify the type and number of elements to allocate. The elements in the array

allocated by new will automatically be initialized to zero. This example allocates a 12-element

array of integers and links them to month_days.

month_days = new int[10];

month_days

Element 0 0 0 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6 7 8 9

After this statement executes, month_days will refer to an array of 12 integers. Further, all

elements in the array will be initialized to zero.

Unit 2: Java Basics

Once you have allocated an array, you can access a specific element in the array by specifying its

index within square brackets. All array indexes start at zero. For example, this statement assigns

the value 28 to the second element of month_days.

month_days[1] = 28;

Element 0 28 0 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6 7 8 9

The next line displays the value stored at index 3.

System.out.println(month_days[3]);

Example Program: Write a Java Program to read elements into array and display them?

ArrayTest.java
import java.io.*;

class ArrayTest

{

public static void main(String args[]) throws IOException

{

DataInputStream dis=new DataInputStream(System.in);

int a[]; //declaring array variable int n, i; //size

of the array System.out.println("Enter the size

of Array:");

n=Integer.parseInt(dis.readLine());

a=new int[n]; //allocating memry to array a and all the elements are set zero

//read the elements into array

System.out.println("Enter the elements into Array:");

for(i=0;i<n;i++)

{

a[i]=Integer.parseInt(dis.readLine());

}

//displaying the elements

System.out.println("The elements of Array:");

for(i=0;i<n;i++)

{

}

}

Output

System.out.print(a[i]+",");

}

Unit 2: Java Basics

L
ef

t

in
d

ex

d
et

er
m

in
es

th
e

R
o

w
s

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look

and act like regular multidimensional arrays. However, as you will see, there are a couple of

subtle differences. To declare a multidimensional array variable, specify each additional index

using another set of square brackets. For example, the following declares a two dimensional

array variable called twoD.

int twoD[][] = new int[4][4];

This allocates a 4 by 4 array and assigns it to twoD. Internally this matrix is implemented as

an array of arrays of int.

Right Index Determines the Columns

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

Example Program for Matrix Addition

import java.io.*;

class AddMatrix

{

public static void main(String args[]) throws IOException

{

int m, n, c, d;

DataInputStream dis=new DataInputStream(System.in);

System.out.println("Enter the number of rows and columns of matrix");

Unit 2: Java Basics

m = Integer.parseInt(dis.readLine());

n = Integer.parseInt(dis.readLine());

int first[][] = new int[m][n];

int second[][] = new int[m][n];

int sum[][] = new int[m][n];

System.out.println("Enter the elements of first matrix");

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

first[c][d] = Integer.parseInt(dis.readLine());

System.out.println("Enter the elements of second matrix");

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

second[c][d] = Integer.parseInt(dis.readLine());

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

sum[c][d] = first[c][d] + second[c][d]; //replace '+' with '-' to subtract matrices

System.out.println("Sum of entered matrices:-");

for (c = 0 ; c < m ; c++)

{

for (d = 0 ; d < n ; d++)

System.out.print(sum[c][d]+"\t");

System.out.println();

}

}

}

Example program for Matrix Multiplication

import java.io.*;

class MulMatrix

{

public static void main(String args[]) throws IOException

{

int m, n, p, q, sum = 0, c, d, k;

DataInputStream dis = new DataInputStream(System.in);

Unit 2: Java Basics

System.out.println("Enter the number of rows and columns of first matrix");

m = Integer.parseInt(dis.readLine());

n = Integer.parseInt(dis.readLine());

int first[][] = new int[m][n];

System.out.println("Enter the elements of first matrix");

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

first[c][d] = Integer.parseInt(dis.readLine());

System.out.println("Enter the number of rows and columns of second matrix");

p = Integer.parseInt(dis.readLine());

q = Integer.parseInt(dis.readLine());

if (n != p)

System.out.println("Matrices with entered orders can't be multiplied with each other.");

else

{

int second[][] = new int[p][q];

int multiply[][] = new int[m][q];

System.out.println("Enter the elements of second matrix");

for (c = 0 ; c < p ; c++)

for (d = 0 ; d < q ; d++)

second[c][d] = Integer.parseInt(dis.readLine());

for (c = 0 ; c < m ; c++)

{

for (d = 0 ; d < q ; d++)

{

for (k = 0 ; k < p ; k++)

{

sum = sum + first[c][k]*second[k][d];

}

multiply[c][d] = sum;

sum = 0;

}

}

System.out.println("Product of entered matrices:-");

for (c = 0 ; c < m ; c++)

Unit 2: Java Basics

{

for (d = 0 ; d < q ; d++)

System.out.print(multiply[c][d]+"\t");

System.out.print("\n");

}

}

}

}

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable.

For example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the

same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for

a method. Both forms are used.

Command Line arguments

The java command-line argument is an argument i.e. passed at the time of running the java

program. The arguments passed from the console can be received in the java program and it can

be used as an input.

Unit 2: Java Basics

So, it provides a convenient way to check the behavior of the program for the different values.

You can pass N (1,2,3 and so on) numbers of arguments from the command prompt. The

command line arguments can be accessed easily, because they are stored as Strings in String

array passed to the args in the main method. The first command line argument is stored in

args[0], the second argument is stored in args[1], the third argument is stored in args[2], and so

on.

Example program:

Write a Java program to read all the command line arguments?

import java.io.*;

class CommnadLine

{

public static void main(String args[])

{

for(int i=0;i<args.length();i++)

{

System.out.println(args[i]+" ");

}

}

}

Here the String class has a method length(), which is used to find the length of the string. This

length can be used to read all the arguments from the command line.

Introduction to Strings

String is probably the most commonly used class in Java’s class library. The obvious reason for

this is that strings are a very important part of programming.

 The first thing to understand about strings is that every string you create is actually an

object of type String. Even string constants are actually String objects.

For example, in the statement

System.out.println("This is a String, too");

the string ―This is a String, too‖ is a String constant.

Unit 2: Java Basics

 The second thing to understand about strings is that objects of type String are

immutable; once a String object is created, its contents cannot be altered. While this may

seem like a serious restriction, it is not, for two reasons:

• If you need to change a string, you can always create a new one that contains the

modifications.

• Java defines a peer class of String, called StringBuffer, which allows strings
to be altered, so all of the normal string manipulations are still available in Java

Strings can be created in a many ways. The easiest is to use a statement like this:

1. String initialization

String myString = "this is a test";
2. Reading from input device

DataInputStream dis=new DataInputStream(System.in);

String st=dis.readLine();

Once you have created a String object, you can use it anywhere that a string is allowed.

For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.

For example, this statement:

String myString = "I" + " like " + "Java.";

results in myString containing ―I like Java.‖

The String class contains several methods that you can use.

Here are a few.

1. equals() - used to test whether two strings are equal or not

2. length() –used to find the length of the string

3. charAt(i) - used to retrieve the character from the string at the index i.

4. compareTo(String) –returns 0, if the string lexicographically equals to the argument,

returns greater than 0 if the argument is lexicographically greater than this string, returns

less than 0 otherwise.

5. indexOf(char) –returns the index of first occurrence of the character.

6. lastIndesOf(char)- returns the last index of the character passed to it.

7. concat(String) -Concatenates the string with the specified argument

Example : int n=myString.length(); //gives the length of the string

Introduction to classes

Fundamentals of the class

Unit 2: Java Basics

A class is a group of objects that has common properties. It is a template or blueprint from

which objects are created. The objects are the instances of class. Because an object is an

instance of a class, you will often see the two words object and instance used interchangeably.

A class is used to define new type of the data. Once defined, this new type can be used to create

objects of its type. The class is the logical entity and the object is the logical and physical entity.

The general form of the class

A class is declared by use of the class keyword. The classes that have been used up to this point

are actually very limited examples of its complete form. Classes can (and usually do) get much

more complex. A simplified general form of a class definition is shown here:

class classname
{

type instance-variable1;
type instance-variable2;
………………………………..
……………………………….
type instance-variableN;

type method1(parameterlist)
{

//body of the method1
}
type method2(parameterlist)
{

//body of the method2
}
……………………………………..
……………………………………..
type methodN(parameterlist)
{

//body of the methodN
}

}

 The data or variables, defined within the class are called, instance variable.

 The methods also contain the code.

 The methods and instance variable collectively called as members.

 Variable declared within the methods are called local variables.

A Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that defines

Unit 2: Java Basics

three instance variables: width, height, and depth. Currently, Box does not contain any

methods.

class Box

{ //instance variables

double width;

double height;

double depth;

}

As stated, a class defines new data type. The new data type in this example is, Box. This defines

the template, but does not actually create object.

Creating the Object

There are three steps when creating an object from a class:

 Declaration: A variable declaration with a variable name with an object type.

 Instantiation: The 'new' key word is used to create the object.

 Initialization: The 'new' keyword is followed by a call to a constructor. This call

initializes the new object.

Step 1:
Box b;

Effect: b null

Declares the class variable. Here the class variable contains the value null. An attempt to access

the object at this point will lead to Compile-Time error.

Step 2:

Box b=new Box();

Here new is the keyword used to create the object. The object name is b. The new operator

allocates the memory for the object, that means for all instance variable inside the object,

memory is allocated.

Effect: b

Width

Height

Depth

Box Object

Step 3:

There are many ways to initialize the object. The object contains the instance variable.

The variable can be assigned values with reference of the object.

b.width=12.34;

b.height=3.4;

b.depth=4.5;

Unit 2: Java Basics

Here is a complete program that uses the Box class:

BoxDemo.java
class Box

{

double width;

double height;

double depth;

}

// This class declares an object of type Box.

class BoxDemo

{

public static void main(String args[])

{

//declaring the object (Step 1) and instantiating (Step 2) object

Box mybox = new Box();

double vol;

// assign values to mybox's instance variables (Step 3)

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

// compute volume of box

vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

When you compile this program, you will find that two .class files have been created, one for

Box and one for BoxDemo. The Java compiler automatically puts each class into its own .class

file. It is not necessary for both the Box and the BoxDemo class to actually be in the same source

file.

To run this program, you must execute BoxDemo.class. When you do, you will see the

following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means that if you

have two Box objects, each has its own copy of depth, width, and height. It is important to

understand that changes to the instance variables of one object have no effect on the instance

variables of another. For example, the following program declares two Box objects:

// This program declares two Box objects.

class Box

{

double width;

double height;

double depth;

Unit 2: Java Basics

}

class BoxDemo2

{

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box

vol = mybox1.width * mybox1.height * mybox1.depth;

System.out.println("Volume is " + vol);

// compute volume of second box

vol = mybox2.width * mybox2.height * mybox2.depth;

System.out.println("Volume is " + vol);

}

}

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box b1 = new Box();

Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to by b1.

That is, you might think that b1 and b2 refer to separate and distinct objects. However, this

would be wrong. Instead, after this fragment executes, b1 and b2 will both refer to the same

object. The assignment of b1 to b2 did not allocate any memory or copy any part of the original

object. It simply makes b2 refer to the same object as does b1. Thus, any changes made to the

object through b2 will affect the object to which b1 is referring, since they are the same object.

This situation is depicted here:

Introduction to Methods

Unit 2: Java Basics

classes usually consist of two things: instance variables and methods. The topic of methods is a

large one because Java gives them so much power and flexibility. In fact, much of the next

chapter is devoted to methods.

This is the general form of a method:

type name(parameter-list)

{

// body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,

including class types that you create. If the method does not return a value, its return type must

be void. The name of the method is specified by name. This can be any legal identifier other than

those already used by other items within the current scope. The parameter-list is a sequence of

type and identifier pairs separated by commas. Parameters are essentially variables that receive

the value of the arguments passed to the method when it is called. If the method has no

parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine using the

following form of the return statement:

return value;

Here, value is the value returned.

Adding a method to the Box class

class Box

{

Box.java

double width, height, double depth;

// display volume of a box

void volume()

{

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

Here the method name is "volume()". This methods contains some code fragment for computing
the volume and displaying. This method cane be accessed using the object as in the following

code:

class BoxDemo3

{

BoxDemo3.java

public static void main(String args[])

{

Box mybox1 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

Unit 2: Java Basics

/* assign different values to mybox2's

// display volume of first box

mybox1.volume();

// display volume of second box

}

}

Returning a Value

A method can also return the value of specified type. In this case the type of the method should

be clearly mentioned. The method after computing the task returns the value to the caller of the

method.

Box

{

double width, height, depth;

BoxDemo3.java

double volume()

{

return (width*height*depth);

}

}

class BoxDemo3

{

public static void main(String args[])

{

Box mybox1 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

double vol;

/* assign different values to mybox2's

//calling the method vol=

mybox1.volume();
System.out.println("the Volume is:"+vol);

}

}

Adding a method that takes the parameters
We can also pass arguments to the method through the object. The parameters separated with
comma operator. The values of the actual parameters are copied to the formal parameters in the

method. The computation is carried with formal arguments, the result is returned to the caller of

the method, if the type is mentioned.

Unit 2: Java Basics

double volume(double w,double h,double d)

{

width=w;

height=h;

depth=d;

return (width*height*depth);

}

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is

created. Even if we use some method to initialize the variable, it would be better this

initialization is done at the time of the object creation.

A constructor initializes an object immediately upon creation. It has the same name as

the class in which it resides and is syntactically similar to a method. Once defined, the

constructor is automatically called immediately after the object is created, before the new

operator completes. Constructors look a little strange because they have no return type, not even

void. This is because the implicit return type of a class’ constructor is the class type itself. It is

the constructor’s job to initialize the internal state of an object so that the code creating an

instance will have a fully initialized, usable object immediately.

Example Program:
class Box

{

double width;

double height;

double depth;

// This is the constructor for Box.

Box()

{

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume()

{

return width * height * depth;

}

}

class BoxDemo6 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box();

double vol;

// get volume of first box vol =

mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

} }

Unit 2: Java Basics

Parameterized Constructors

While the Box() constructor in the preceding example does initialize a Box object, it is not very

useful—all boxes have the same dimensions. What is needed is a way to construct Box objects of

various dimensions. The easy solution is to add parameters to the constructor.

/* Here, Box uses a parameterized constructor to

initialize the dimensions of a box.

*/

class Box

{

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d)

{
width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box vol =

mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box vol =

mybox2.volume();

System.out.println("Volume is " + vol);

}
}

Constructor-overloading

In Java it is possible to define two or more class constructors that share the same name, as

long as their parameter declarations are different. This is called constructor overloading.

Unit 2: Java Basics

When an overloaded constructor is invoked, Java uses the type and/or number of

arguments as its guide to determine which version of the overloaded constructor to actually call.

Thus, overloaded constructors must differ in the type and/or number of their parameters.

Example: All the constructors names will be same, but their parameter list is different.

OverloadCons.java

class Box {

double width;

double height;

double depth;

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons

{

public static void main(String args[])

{

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

Unit 2: Java Basics

The output produced by this program is shown here:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be

wondering how such objects are destroyed and their memory released for later reallocation. In

some languages, such as C++, dynamically allocated objects must be manually released by use

of a delete operator. Java takes a different approach; it handles deallocation for you

automatically. The technique that accomplishes this is called garbage collection.

It works like this: when no references to an object exist, that object is assumed to be no

longer needed, and the memory occupied by the object can be reclaimed. There is no explicit

need to destroy objects as in C++. Garbage collection only occurs during the execution of your

program. The main job of this is to release memory for the purpose of reallocation. Furthermore,

different Java run-time implementations will take varying approaches to garbage collection

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example,

if an object is holding some non-Java resource such as a file handle or character font, then you

might want to make sure these resources are freed before an object is destroyed. To handle such

situations, Java provides a mechanism called finalization. By using finalization, you can define

specific actions that will occur when an object is just about to be reclaimed by the garbage

collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time

calls that method whenever it is about to recycle an object of that class. Inside the finalize()

method, you will specify those actions that must be performed before an object is destroyed. The

garbage collector runs periodically, checking for objects that are no longer referenced by any

running state or indirectly through other referenced objects

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined

outside its class.

Unit 2: Java Basics

Overloading methods

In Java it is possible to define two or more methods within the same class that share the same

name, as long as their parameter declarations are different. When this is the case, the methods are

said to be overloaded, and the process is referred to as method overloading. Method overloading

is one of the ways that Java supports polymorphism.

When an overloaded method is invoked, Java uses the type and/or number of arguments as its

guide to determine which version of the overloaded method to actually call. Thus, overloaded

methods must differ in the type and/or number of their parameters. While overloaded methods

may have different return types, the return type alone is insufficient to distinguish two versions

of a method. When Java encounters a call to an overloaded method, it simply executes the

version of the method whose parameters match the arguments used in the call.

Here is a simple example that illustrates method overloading:
// Demonstrate method overloading.

class OverloadDemo

{

void test()

{

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a)

{

System.out.println("a: " + a);

}

}

class Overload

{

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

}
}

The test() method is overloaded two times, first version takes no arguments, second

version takes one argument. When an overloaded method is invoked, Java looks for a match

between arguments of the methods. Method overloading supports polymorphism because it is

one way that Java implements the ―one interface, multiple methods‖ paradigm.

Unit 2: Java Basics

static keyword
There will be times when you will want to define a class member that will be used

independently of any object of that class. Normally, a class member must be accessed only in

conjunction with an object of its class. However, it is possible to create a member that can be

used by itself, without reference to a specific instance.

To create such a member, precede its declaration with the keyword static. When a

member is declared static, it can be accessed before any objects of its class are created, and

without reference to any object. You can declare both methods and variables to be static. The

most common example of a static member is main(). main() is declared as static because it

must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of

its class are declared, no copy of a static variable is made. Instead, all instances of the class share

the same static variable.

Methods declared as static have several restrictions:

• They can only call other static methods.

• They must only access static data.

• They cannot refer to this or super in any way.

If you need to do computation in order to initialize your static variables, you can declare a static

block that gets executed exactly once, when the class is first loaded. The following example

shows a class that has a static method, some static variables, and a static initialization block:

class UseStatic {

static int a = 3;

static int b;

static void meth(int x) {

System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}
static {

System.out.println("Static block initialized.");

b = a * 4;

}

public static void main(String args[]) {

meth(42);

}

}

static variables a and b, as well as to the local variable x.

Here is the output of the program:

Static block initialized.

x = 42

a = 3

b = 12

Unit 2: Java Basics

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines

the this keyword. this can be used inside any method to refer to the current object. That is, this

is always a reference to the object on which the method was invoked. You can use this anywhere

a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.

Box(double w, double h, double d)

{

this.width = w;

this.height = h;

this.depth = d;

}

Note: This is mainly used to hide the local variables from the instance variable.

Example:
class Box

{

//instance variable
double width, height, depth;

Box(double width, double height, double depth)

{

//local variables are assigned, but not the instance variable
width=width;
height=height;

depth=depth;

}

}

To avoid the confusion, this keyword is used to refer to the instance variables, as follows:

class Box

{

//instance variable
double width, height, depth;

Box(double width, double height, double depth)

{

//the instance variable are assigned through the this keyword.

this.width=width;
this.height=height;

this.depth=depth;

}

}

