
Unit 1: Need of OOP

Unit-1

1. Introduction to Object Oriented Programming

The Object Oriented Programming (OOP) is one of the most interesting innovations in the

Software Development. It addresses problems commonly known as "Software Crisis". Many

software failed in the past. The term 'Software Crisis' is described in terms of failure in the

software

 Exceeding Software Budget

 Software is not meeting the client's requirements.

 Bugs in the software.

OOP is a programming paradigm with deals with the concepts of the objects to build programs

and software applications. IT is molded around the real world objects. Every object has well-

defined identity, attributes, and behavior. The features of the object oriented programming are

similar to the real world features like Inheritance, abstraction, encapsulation, and

polymorphism.

2. Need of OOP

Whenever a new programming language is designed some trade-offs are made, such as

 ease-of-use verses power

 safety verses efficiency

 Rigidity versus extensibility

Prior to the c language, there were many languages:

 FORTRAN, which is efficient for scientific applications, but is not good for system

code.

 BASIC, which is easy to learn, but is not powerful, it is lack of structure.

 Assembly Language, which is highly efficient, but is not easy to learn.

These languages are designed to work with GOTO statement. As a result programs

written using these languages tend to produce "spaghetti code", which is impossible to

understand.

Unit 1: Need of OOP

Dennis Ritchie, during his implementation of UNIX operating system, he developed C

language, which similar to an older language called BCPL, which is developed by Martin

Richards. The BCPL was influenced by a language called B, invented by Ken Thomson. C was

formally standardized in December 1989, when the American National Standards Institute

(ANSI) standard for C was adopted.

During the late 1970s and early 1980s, C became the dominant computer programming

language, and it is still widely used today. The C language is structured, efficient and high level

language. Since C is a successful and useful language, you might ask why a need for something

else existed. The answer is complexity. As the program complexity is increasing it demanded the

better way to manage the complexity.

When computers were first programming was done by manually toggling in the binary

machine instructions by use of the front panel. As long as programs were just a few hundred

instructions long, this approach worked. As programs grew, assembly language was invented so

that a programmer could deal with larger, increasingly complex programs by using symbolic

representations of the machine instructions. As programs continued to grow, high-level

languages were introduced that gave the programmer more tools with which to handle

complexity.

The 1960s gave birth to structured programming. This is the method of programming

championed by languages such as C. The use of structured languages enabled programmers to

write, for the first time, moderately complex programs fairly easily. However, even with

structured programming methods, once a project reaches a certain size, its complexity exceeds

what a programmer can manage. To solve this problem, a new way to program was invented,

called object-oriented programming (OOP). OOP is a programming methodology that helps

organize complex programs through the use of inheritance, encapsulation, and polymorphism.

3. The OOP Principles

OOP languages follow certain principles such as, class, object, abstraction, encapsulation,

inheritance and polymorphism.

3.1 Classes
A class is defined as the blueprint for an object. It serves as a plan or template. An object
is not created just by defining the class, but it has to be created explicitly. It is also

defined as new data type contains data and methods.

3.2 Objects
Objects are defined as the instances of a class. For example chairs and tables are all
instances of Furniture. The objects have unique Identity, State and Behavior.

3.3 Abstraction

We can group the following items as Animals, Furniture and Electronic Devices.

Elephant Television

CD Player Chair

Table Tiger

Here just by focusing on the generic characteristics of the items we can group the
items into their classes rather than specific characteristics. This is called "abstraction".

Unit 1: Need of OOP

3.4 Encapsulation

 Encapsulation is the mechanism that binds methods and data together into a single unit.

 This hides the data from the outside world and keeps both safe from outside interference

and misuse.

 It puts some restriction on outside code from directly accessing data.

 Encapsulation is also known as "Data Hiding".

 The Data can be accessed by the methods of the same class. Access to the code and data

inside the wrapper is tightly controlled through a well-defined interface.

 In Java, the basis of encapsulation is the class.

 A class defines the structure and behavior (Data and Method) that will be shared by a set

of objects. Each object of a given class contains the structure and behavior defined by the

class.

 The objects are sometimes referred to as instances of a class. Thus, a class is a logical

construct; an object has physical reality.

 When you create a class, you will specify the code and data that constitute that class.

Collectively, these elements are called members of the class.

 Specifically, the data defined by the class are referred to as member variables or

instance variables.

 The code that operates on that ata is referred to as member methods or just methods.

The members can be public or private. When a member is made public any code outside

the class can access them. If the members are declared as private, then only the members

of that class can access its members.

Unit 1: Need of OOP

3.5 Inheritance

 Inheritance is the process by which one class acquires the properties or characteristics

from another class.

 Here we have two types of classes: base class and derived class.

 The class from which the properties or characteristics are acquired is called "Base Class".

The class that acquires the properties is called "Derived Class".

 The base class is also called super class or parent class. The derived class is also called

sub class or child class.

 The main use of Inheritance is code reusability.

 The keyword "extends" is used for inheriting the properties.

3.6 Polymorphism

 Polymorphism simply means many forms (from Greek, meaning “many forms”).

 It can be defined as same thing being used in different forms.

 It has two forms: compile-time polymorphism and run-time polymorphism.

 We know that binding is the process of linking function call to the function definition. If

the linking is done at compile-time, then it is called compile-time binding. If it is done at

the run time it is called run-time binding.

 The compile-time binding is also called as "static binding". The run-time binding is also

called as "dynamic binding".

 The compile-time binding is implemented using method overloading. The run-time

binding is implemented using method overriding.

4. Procedural language Vs OOP

All computer programs consist of two elements: methods and data. Furthermore, a program

can be conceptually organized around its methods or around its data. That is, some programs are

written around “what is happening” and others are written around “who is being affected.”

These are the two paradigms that govern how a program is constructed. The first way is called

the process-oriented model or procedural language. This approach characterizes a program as a

series of linear steps (that is, code). The process-oriented model can be thought of as code acting

on data. Procedural languages such as C employ this model to considerable success.

To manage increasing complexity, the second approach, called object-oriented programming,

was designed. Object-oriented programming organizes a program around its data (that is,

objects) and a set of well-defined interfaces to that data. An object-oriented program can be

characterized as data controlling access to code.

Procedural language Object Oriented Programming language

Separates data from functions that operate on

them

Encapsulates the data and methods in a class

Not suitable for defining abstract types Not suitable for defining abstract types

Debugging is difficult Debugging is easier

 Difficult to implement the change Easier manage and implement the change

Unit 1: Need of OOP

Not suitable for large programs and

applications

suitable for large programs and applications

Analysis and design is not so easy Analysis and design is easy
Faster Slower

Less flexible Highly flexible

Less reusable More reusable

Only procedures and data are there Inheritance, Encapsulation and polymorphism

are the key features.

Uses top-Down approach Uses Bottom-Up approach

Examples: C, Basic, FORTRAN Example: C++,Java

5. Applications of OOP

There are mainly 4 types of applications that can be created using java programming:

1) Standalone Application

It is also known as desktop application or window-based application. An application that we

need to install on every machine such as media player, antivirus etc. AWT and Swing are used in

java for creating standalone applications.

2) Web Application

An application that runs on the server side and creates dynamic page, is called web application.

Currently, servlet, jsp, struts, etc. technologies are used for creating web applications in java.

3) Enterprise Application

An application that is distributed in nature, such as banking applications etc. It has the advantage

of high level security, load balancing and clustering. In java, EJB is used for creating enterprise

applications.

4) Mobile Application

An application created for mobile devices is called Mobile Applications. Currently Android and

Java ME are used for creating mobile applications.

In addition to the above applications, there are other applications that use OOP concepts as

follow:

Unit 1: Need of OOP

5. Neural Networks –The neural system of the human body is simulated into the machine, so

that optimizations are carried out according to it.

6. Real Times –These Systems work bases on the time. Examples airline, rockets, etc;

7. Expert System –Expert's knowledge is integrated with system, that system will respond as the

expert in the particular domain.

8. Database management systems – Data is constructed into tables and collection of table is

called database. Java is used to process the data that is available in the database, such as

insertion, deletion, display etc;.

6. History of JAVA

1. Brief history of Java

2. Java Version History
Java history is interesting to know. The history of java starts from Green Team. Java Team

members (also known as Green Team), initiated a revolutionary task to develop a language for

digital devices such as set-top boxes, televisions etc. For the green team members, it was an

advance concept at that time. But, it was suited for internet programming. Later, Java technology

as incorporated by Netscape. Currently, Java is used in internet programming, mobile devices,

games, e-business solutions etc. There are given the major points that describe the history of

java.

1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in

June 1991. The small team of sun engineers called Green Team.

2) Originally designed for small, embedded systems in electronic appliances like set-top boxes.

3) Firstly, it was called "Greentalk" by James Gosling and file extension was ".gt"

4) After that, it was called Oak and was developed as a part of the Green project. This name was

inspired by the Oak Tree that stood outside Golsling's Office.

Why Oak name for java language?
5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like
U.S.A., France, Germany, Romania etc. During 1991 to 1995 many people around the world

contributed to the growth of the Oak, by adding the new features. Bill Joy, Arthur Van Hoff,

Jonathan Payne, Frank Yellin, and Tim Lindholm were key contributors to the original

prototype.

6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak

Technologies.

Why Java name for java language?

http://www.javatpoint.com/history-of-java
http://www.javatpoint.com/history-of-java#version

Unit 1: Need of OOP

7) Why they chosen java name for java language? The team gathered to choose a new name.

The suggested words were "dynamic", "revolutionary", "Silk", "jolt", "DNA" etc. They wanted

something that reflected the essence of the technology: revolutionary, dynamic, lively, cool,

unique, and easy to spell and fun to say. According to James Gosling "Java was one of the top

choices along with Silk". Since java was so unique, most of the team members preferred java.

8) Java is an island of Indonesia where first coffee was produced (called java coffee). Java

coffee was consumed in large quantities by the GreenTeam.

9) Notice that Java is just a name not an acronym.

10) Originally developed by James Gosling at Sun Microsystems (which is now a subsidiary of

Oracle Corporation) and released in 1995.

11) In 1995, Time magazine called Java one of the Ten Best Products of 1995.

12) JDK 1.0 released in(January 23, 1996).

Java Version History

There are many java versions that has been released. Current stable release of Java is Java SE 8.

1. JDK Alpha and Beta (1995)

2. JDK 1.0 (23rd Jan, 1996)

3. JDK 1.1 (19th Feb, 1997)

4. J2SE 1.2 (8th Dec, 1998)

5. J2SE 1.3 (8th May, 2000)

6. J2SE 1.4 (6th Feb, 2002)

7. J2SE 1. 5 (30th Sep, 2004)

8. Java SE 1.6 (11th Dec, 2006)

9. Java SE 1.7 (28th July, 2011)

10. Java SE 1.8 (18th March, 2014)

7. Java Virtual Machine

The key that allows Java to solve both the security

and the portability problems is the byte code. The output

of Java Compiler is not directly executable. Rather, it

contains highly optimized set of instructions. This set of

instructions is called, "byte code". This byte code is

designed to be executed by Java Virtual Machine (JVM).

The JVM also called as the Interpreter for byte code.

JVM also helps to solve many problems associated with

web-based programs.

Unit 1: Need of OOP

Translating a Java program into byte code makes it much easier to run a program in a

wide variety of environments (or platforms) because only the JVM needs to be implemented for

each platform. Once the run-time package exists for a given system, any Java program can run

on it. Remember, although the details of the JVM will differ from platform to platform, all

understand the same Java Byte Code. Thus, the execution of byte code by the JVM is the easiest

way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure. Because the

JVM is in control, it can contain the program and prevent it from generating side effects outside

of the system.

In general, when a program is compiled to an intermediate form and then interpreted by a virtual

machine, it runs slower than it would run if compiled to executable code. However, with Java,

the differential between the two is not so great. Because byte code has been highly optimized, the

use of byte code enables the JVM to execute programs much faster than you might expect

To give on-the-fly performance, the Sun began to design HotSpot Technology for Compiler,

which is called, Just-In-Time compiler. The JIT, Compiler also produces output immediately

after compilation.

8. Features of Java

There is given many features of java. They are also known as java buzzwords. The Java Features

given below are simple and easy to understand.

o Simple
o Secure
o Portable
o Object-oriented
o Robust
o Multithreaded
o Architecture-neutral
o Interpreted
o High performance
o Distributed
o Dynamic

Simple

Java was designed to be easy for the professional programmer to learn and use effectively.

According to Sun, Java language is simple because: syntax is based on C++ (so easier for

programmers to learn it after C++). Removed many confusing and/or rarely-used features e.g.,

explicit pointers, operator overloading etc. No need to remove unreferenced objects because

there is Automatic Garbage Collection in java.

Unit 1: Need of OOP

Secure

Once the byte code generated, the code can be transmitted to other computer in the world

without knowing the internal details of the source code.

Portable

The byte code can be easily carried from one machine to other machine.

Object Oriented

Everything in Java is an Object. The object model in Java is simple and easy to extend, while

primitive types, such as integers, are kept as high-performance non-objects.

Robust

The multi-plat-formed environment of the Web places extraordinary demands on a program,

because the program must execute reliably in a variety of systems. Thus, the ability to create

robust programs was given a high priority in the design of Java. Java also frees from having

worry about many errors. Java is Robust in terms of memory management and mishandled

exceptions. Java provides automatic memory management and also provides well defined

exception handling mechanism.

Multithreaded

Java was designed to meet the real-world requirement of creating interactive, networked

programs. To accomplish this, Java supports multithreaded programming, which allows you to

write programs that do many things simultaneously.

Architecture-neutral

The Java designers made several hard decisions in the Java language and the Java Virtual

Machine in an attempt to alter this situation. Their goal was “write once; run anywhere, any

time, forever.” To a great extent, this goal was accomplished.

Interpreted and High Performance

Java enables the creation of cross-platform programs by compiling into an intermediate

representation called Java byte code. This code can be executed on any system that implements

the Java Virtual Machine. Most previous attempts at cross-platform solutions have done so at the

expense of performance. As explained earlier, the Java byte code was carefully designed so that

it would be easy to translate directly into native machine code for very high performance by

using a just-in-time compiler.

Distributed

Unit 1: Need of OOP

Java is designed for the distributed environment of the Internet because it handles TCP/IP

protocols. In fact, accessing a resource using a URL is not much different from accessing a file.

Java also supports Remote Method Invocation (RMI). This feature enables a program to invoke

methods across a network.

Dynamic
Java programs carry with them substantial amounts of run-time type information that is used to
verify and resolve accesses to objects at run time. This makes it possible to dynamically link

code in a safe and expedient manner.

9. Program Structures

Simple Java Program

Example.java

class Example

{

public static void main(String args[])

{

System.out.println("Hello World");

}

}

Entering the Program

We can use any text editor such as "notepad' or "dos text editor". The source code is typed and

is saved with ".java" as extension. The source code contains one or more class definitions. The

program name will be same as class name in which main function is written. This in not

compulsory, but by convention this is used. The source file is officially called as compilation

unit. We can even uses our choice of interest name for the program. If we use a different name

than the class name, then compilation is done with program name, and running is done with class

file name. To avoid this confusion and organize the programs well, it is suggested to put the

same name for the program and class name, but not compulsory.

Compiling the Program

To compile the program, first execute the compiler, "javac", specifying the name of the source

file on the command line, as shown bellow:

c:\>javac Example.java

The javac compiler creates the file called "Example.class", that contains the byte code version of

the source code. This byte code is the intermediate representation of the source code that

contains the instructions that the Java Virtual Machine (JVM) will execute. Thus the output of

the javac is not the directly executable code.

Unit 1: Need of OOP

To actually run the program, we must use Java interpreter, called "java". This is

interpreter the "Example.class" file given as input.

When the program is run with java interpreter, the following output is produced:

Hello World

Description of the every line of the program

The first line contains the keyword class and class name, which actually the basic unit for

encapsulation, in which data and methods are declared.

Second line contains "{" which indicates the beginning of the class.

Third line contains the

public static void main(String args[])

where public is access specifier, when a member of a class is made public it can be accessed by

the outside code also. The main function is the beginning of from where execution starts. Java is

case-sensitive. "Main" is different from the "main". In main there is one parameter, String args,

which is used to read the command line arguments.

Fourth line contains the "{", which is the begining of the main function.

Fifth line contains the statement

System.out.println("Hello World");

Here "System" is the predefined class, that provides access to the system, and out is the output

stream that is used to connect to the console. The println(), is used to display string passed to it.

This can even display other information to.

10.Installation of JDK 1.6

Installing the JDK Software

If you do not already have the JDK software installed or if JAVA_HOME is not set, the Java CAPS installation will not

be successful. The following tasks provide the information you need to install JDK software and set JAVA_HOME on

UNIX or Windows systems.

The following list provides the Java CAPS JDK requirements by platform.

Solaris

Unit 1: Need of OOP

JDK5: At least release 1.5.0_14

JDK6: At least release 1.6.0_03

IBM AIX

JDK5: The latest 1.5 release supported by IBM AIX

Linux (Red Hat and SUSE)

JDK5: At least release 1.5.0_14

JDK6: At least release 1.6.0_03

Macintosh

JDK5: The latest 1.5 release supported by Apple

Microsoft Windows

JDK5: At least release 1.5.0_14

JDK6: At least release 1.6.0_03

To Install the JDK Software and Set JAVA_HOME on a

Windows System

1. Install the JDK software.

a. Go to http://java.sun.com/javase/downloads/index.jsp.

Note: java.sun.com now owned by oracle corporation

http://java.sun.com/javase/downloads/index.jsp

Unit 1: Need of OOP

b. Select the appropriate JDK software and click Download.

The JDK software is installed on your computer, for example, at C:\Program

Files\Java\jdk1.6.0_02. You can move the JDK software to another location if desired.

2. To set JAVA_HOME:

a. Right click My Computer and select Properties.

b. On the Advanced tab, select Environment Variables, and then edit JAVA_HOME to point to where the JDK

software is located, for example, C:\Program Files\Java\jdk1.6.0_02.

Unit 1: Need of OOP

Installation of the 32-bit JDK on Linux Platforms

This procedure installs the Java Development Kit (JDK) for 32-bit Linux, using an archive binary file (.tar.gz).

These instructions use the following file:

jdk-8uversion-linux-i586.tar.gz

1. Download the file.

Before the file can be downloaded, you must accept the license agreement. The archive binary can be installed

by anyone (not only root users), in an location that you can write to. However, only the root user can install the

JDK into the system location.

2. Change directory to the location where you would like the JDK to be installed, then move the .tar.gz archive

binary to the current directory.

3. Unpack the tarball and install the JDK.

4. % tar zxvf jdk-8uversion-linux-i586.tar.gz

The Java Development Kit files are installed in a directory called jdk1.8.0_version in the current directory.

5. Delete the .tar.gz file if you want to save disk space.

