
 

 

UNIT 5 
BACKTRACKING 

BACKTRACKING (General Method) 

Definition 
  Depth First node generation with bounding function is called backtracking. 

  Suppose mi is the size of set Si. Then there are m=m1,m2…..mn  n-tuples that are 

possible candidates for satisfying the function P. 

  The Backtrack algorithm has its virtue the ability to yield the answer with far 

fewer than m trials. It’s basic idea is to build up the solution vector one 
component at a time and to use modified criterion functions Pi(x1,……..xi) to test 

whether the vector being formed has any chance of success. 

  If it is realized that partial vector (x1,……..xi) can in no way lead to an optimal 

solution, then mi+1,….mn  possible test vectors can be ignored entirely. 

  Problems solved through backtracking require that all the solution satisfy a 

complex set of constraints. i.e, (Implicit, Explicit constraints). 
 
Explicit Constraint: 

Are Rules that each xi  to take on values only from a given set. The explicit 

constraints depends on the particular instance of I of the problem being solved. 
E.g 

1.  xi >= 0  or Si  = { all non negative real numbers  } 
2.  xi   = 0   or 1    or Si   = { 0, 1 } 

 
Implicit Constraint : 

Implicit Constraint are rules that determine which of the tuple in the solution 

space of  I satisfy the criterion function. Thus implicit constraints describe the way in 

which the X; must relate to each other. 

Ex: 

Number two  queen attack each other are implicit constraints in the 8-queen 

problem. 

 
Example General method  [ 4 – queens problem] 

 
 Bounding Function: If (x1, x2  ,…, xi  ) is the path to current E-node, then all 

children nodes with parent – child  labelings xi+1 are such that (x1,x2,..,xi+1) 

represents a chess board  configuration in which no two queens are attacking. 

 Start with the root node as the only live node.This become  E – node, gererate 

child .Thus  node number 2 is generated now the path is (1). This 

corresponding to placing queen 1 on column 1. 

 Node 2 become the  E – node. Node 3 generated & immediately killed . The 

next node generated is 8  and the Path becomes (1,3). Node 8 – become E - 

node 



 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tree Organization of the 4 – queen solution space. 

[ Nodes are numbered in DFS ] 

 
  8 gets killed as all its children represent bound configuration that cannot lead to 

an answer node. Backtrack to node 2. and generate another child, node 13. 

  The following fig. Shows the backtracking algorithm goes through as it tries to 

find a solution. The dots indicates placement of a queen, which were tried and 

rejected. 
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Part of the solution space tree that is generated during backtracking. Nodes are numbered in the order 

 

in which they are generated. 
 
 

 

X1=1 

1         X1=2 

2                                                                                             18   x2=4 
 

x2=4 

x2=2                x2=3           13                                                  19                   24                    29 
 

3            8                                                                       B                            B 

B                                                                                                                                                   x3=1 

14               10                                                                                     30 
 

9               11                            B 

B                                                                                                                                        x4=3 
 

B 15                                                                                                      31 
 
 

B- A node that gets killed as a result of the bounding function. 
 

Back Tracking Process: 
 

   All answer nodes are to be found. 
 

  Let (x1,x2,…xi) be a path from the root to a node in a state space tree. 
 

  Let T(x1,…xi) be the set of all possible values for xi+1. S.T. (x1,x2,..xi+1 ) is 

also a path to a problem state. 

  T(x1,x2…xn) = (null). 
 

  Bounding function Bi+1 (x1,x2,..xi+1) is false, if path cannot be extended to 

reach ans node from x1,x2..xi+1 th place. 

  Backtrack start with Backtrack (1). 



 

 

Algorithm Backtrack (k) 
 

{ 
 

for (each x[k]  T(x[1],…,x[k-1]) do 
 

{ 
 

if(Bk(x[1],x[2],…x[k]) 0) then 
 

{ 
 

if(x[1],x[2],…,x[k]. is a path to an  ans.node) 
 

then write(x[1:k]) 
 

if(k<n) then Backtrack(k+1); 
 

} 
 

} 
 

} 
 

Estimating Number of nodes generated by backtracking algorithm 

(Using monte carlo) 

algorithm estimate() 

{ 

k:=1; 

m:=1; 

r:=1; 

repeat 

{ 

Tk:={x[k]|x[k]  E T(a[1],x[2],……x[k-1]) 

And Bk (x[1],…..x[k] )is true}; 

If(size (Tk)=0) then 

Return m; 

R:=r* Size(Tk); 

M:= m +r; 

X[k] : = choose(Tk); 

K: = k +1; 

}until(false); 

} 

//Estimating the effiency of backtracking. 

    The function size return the size of the set Tk. 

    The function Choose makes a random choice of an element in Tk. 

    The desired sum is built using the variable m & r. 

 A better estimate of the number of unbounded nodes that will be generated by a 

backtracking algorithm can be obtained by selecting several different   random 

paths and determining the average of these values. 



 

 

Queen Problem 
given a problem to place eight queens on an 8* 8 chess board so that no two “attack” 
that is , so that no two of then are on the same row, column, or diagonal 
 if the imagine the chess board squares indices of the two – dimensional array 

a[1:n,1:n], then we observe that every element on the same diagonal that rows 

from the upper left to the right has same row – column value. 

 Every element on the same diagonal that goes from the upper right to the lower 

left has same row+ column value. 

 Suppose two queens are placed at position (i,j) and (k,l) then they are on the same 

diagonal iff 

I -j = k-l or I+ j = k+l 
    the first eq impiles  j-l = I – k 

    the second eq implies j-l = k – I 

therefore two queens lies on the same diagonal 

 
iff |j-l| = |I-k|                otherwise                        (|a|=abs(a)) 

 
Algorithm 

 
Algorithm place(k,i) 

//return true if a queen can be placed in kth row  I th column. Else it return false. X[] is a 

global array. Abs ( ) return absolute value of r// 

{ 

for I =1 to k –1 do 

if ((x[j] =I) or (abs(x[j] –I )= abs (j-k)) 

then return false; 

return true; 

} 

 
Algorithm  nqueen(k,n) 

//this procedure prints all possible placement of n queue on an n*n chessboard so that 

//they are non-attaching 

{ 

for I=1 to n do 

{ 

if place(k,I)then 

{ 

x[k]=I; 

if (k=n) then write(x[1:n]); 
else nqueen(k+1,n); 

} 

} 

} 
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Analysis/efficiency of 8-queens 
 

 using the e estimate function five 8*8 chessboards were created. 

 The placement of each queen on the chessboard was chosen randomly. 
 Track of no.of..columns  or queen could legitimately be placed is given as a vector 

beneath called chessboard. 

 The average of five trial is 1625. 

 Total no.of  nodes in 8-queen state space tree is 

7     j 

1+  [ (8-I)] =  69,281 

j=0  I=0 
 

so the estimated number of unbounded nodes is only about 2.34% of the total no.of 

nodes in the 8-queen state space tree 

 following are the 8*8 chessboards that were created using estimate. 
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(8,5,4,3,2)=16 49                                      (8,5,3,1,2,1)= 769 
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(8,6,4,2,1,1,1)=1401                                (8,6,4,3,2)=1977 
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(8,5,3,2,2,1,1,1)=2329 

 
7.3 SUM OF SUBSETS 

 

Suppose we are given n distinct positive numbers (called weights) and we desire to 

find all combinations  of these numbers whose sum are m. this is called the sum of subset 

problem. 

e.g 

if n=4;  (w1,w2,w3,w4)=(11,13,24,7); m=31. 

 
Then solution vectors may be 

(1,2,4),  (3,4) etc… 

(elements in the solution vector. Are indices of w) 

ie  w1+w2+w4+=31 

and  w3+w4=31 etc.. 

 
A possible solution space organization for the sum of subsets problem [nodes numbered 

in BFS] 



 

 

Algorithm sum of sub 
 

k             n 

 Formula if Xk = 1, then ∑ wi xi + ∑ wi > m. 

i =1        i =k+1 
 

k               n 

 This algorithm avoids computing ∑ wi xi and ∑ wi each time by keeping these 

i =1          i =k+1 
values in variables s and r. 

 
n 

 It assumes w1   m and ∑ wi   m 

i=1 
 

n 

    The initial call is sum of sub (0, 1, ∑ wi  ) 

i=1 

 
Algorithm sumofsub(s, k, r) 

// finds all subsets of w[1:n] that sum to m. 

// The values x[j]; j = 1 to k have already determined 

k-1                          n 

// s = ∑ w[j] * x[j] ; r =  ∑ w[j] 

j-1                         j=k 

{ 

x[k] = 1; 
if ( s + w[k] = m ) then write (x[1:k]); 

else if ( s + w[k] + w[k + 1]  m ) 

then Sumofsub ( s + w[k], k+1, r-w[k]); 

if(( s + r - w[k]  m ) and (s + w[k+1]  m)) then 

{ 

x[k] = 0; 

Sumofsub (s, k+1, r-w[k]); 
} 

} 
 

Example for Sumofsub problem 
 

    Let n = 6; m = 30; w[1:6] = { 5, 10, 12, 13, 15, 18}. 

    The rectangular node in fig. Lists values of 3, k, r on each call of above algorithm. 
Circular node represent points at which result are printed out. At node A, B, C 
respectively (1,1,0,0,1), (1,0,1,1) and (0,0,1,0,0) are outputs 



 

 

 
 

 
 

 
 

 
  
 

 
  

 
 
 

 
 

 
 

 
  

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 
 

 
 

 
  

 
 

 

 
 

 
 

 
 

 
  

 
 

 
 
 

 
 

 
 

 
  

  
 

 
 

 
 

 
  
 

 

 
 

 

 
 

 

 
 

 
 

 
 

 
 
 

 

 

 

 
 

 
 

 

 
 

 

 

 
 
 
 
 
 

 

 
 

 

 
 

 

 
 

 

 
 
 

 

 

 
 
 
 

GRAPH COLORING 
 

m-colorability decision problem: 
 

Let G be a graph and m be a given positive integer. Determining whether the 

nodes of G can be colored in such a way that no two adjacent odes have the same color 

yet only m colors one used is called   M-colorability decision prob. 

 
m-colorability optimization prob: 

 

m-colorability optimization problem asks the smallest integer m for which the 

graph G be colored. m is called chromatic number of the graph. 

 

M coloring 
 

To determine all the different ways in which a given graph can be colored using 

at most m colors . 

 
Suppose we represent a graph by its adjacency matrix G[1:n,1:n]; 

The colors are represented by the integers   1,2,3,………,m. 

The solution are given by the n-tuple (x1,….xn) where xi is the color of node i. 

Function m coloring is  begun by first assigning the graph to its adjacency matrix, setting 

the array z[] to zero .and involving statement mcoloring (1); 



 

 

 

Algorithm m coloring (k) 

{ 

repeat 

{     // Generate all legal assignment for x [k] 
nextvalue (k); 

if (x[k]=0) then return; //no color possible 

if (k=n) then // at most m color have been used 

write (x[1:n]); 

else 

mcoloring(k+1); 

} until(false); 

} 

 
Algorithm next value (k) 

{ 

repeat 

{ 

x[k]=(x[k]+1) mod (m+1); //next highest color 

if (x[k]=0) then return; //all colors have been used 

for j:=1 to n do 

{ 

if ((G[k,j] 0) and (x[k]=x[j])) 

// adjacent vertices have the same color 

then break; 

} 

if (j=n+1) then return; //new color found 

}until (false);  //other try to find another color 

} 
 

time complexity for m coloring 
 

upper bound of complexity time can be calculated by number of internal nodes in 

the state space tree. ie, ∑i=n-1 m
i
 

 
At each internal node,O(mn) time is spent by NextValue 

Hence the total time is bounded by 

∑i=n-1 m 
i+1 

=       ∑i=n-1    m 
I
=n(m 

n+1
-2)/(m-1)=O(nm 

n
) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Each path to a leaf represents a coloring using atmost three colors (12 solutions exist) 

 

 

 
 

Example for mcoloring problem 
 

Consider the graph of four nodes. 

 
1                      2 

 

 
 
 
 
 

4                      3 
 

 
 

The tree generated by m-coloring for the above graph  with m=3 is 
 

 
 
 
 

1                    3 
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2       3                              1        3                                 1         2 
 
 
 
 

1   3             1     2           2      3           1      2               2    3            1        3 
 
 
 
 

2    3      2     2     3     3    1       3     1      3       1      3     1       1     2     2           1         2 
 
 
 

 

A 4-NODE GRAPH AND ALL POSSIBLE 3-COLORING 
 

 
 

In this tree after choosing x1=2 and x2=1, the possible choices for x3  are 2 & 3. 

After selecting x1=2 , x2=1 , x3=2 possible choice for x4=1 & 3 and so on. 



 

 

 
 

HAMILTANIAN CYCLES 
 

Definition:(Informal) 
Hamiltonian Cycle is a round –trip path along n-edges of G that visits every 

vertex once and return to its starting position. 

 
Formal Definition: 

Hamilton cycle begins at some vertex v1   G and the vertices of G are visited in 

the order V1,V2,… Vn+1 then the edges (Vi,Vi+1) are in E, 1  i  n , and the vi are the 

distinct except for v1 and vn+1, which are equal. 

 
Example: Graph 

 
G (contain Hamiltonian cycle) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Back tracking solution to Hamiltonian cycles 
 
* Backtracking Alg finds all the Hamiltonian cycles in a graph. 

* The solution vector (x1…Xn) is defined so that xi  represent the ith visited  vertex of 

proposed cycle. 

* It begin by x1=1; xk  (for k=2 to n-1) can be any vertex v that is distinct from 

x1,x2,…..xk-1 and v is connected by an edge to  xk-1. 

* The vertex xn  can be only be the one remaining vertex   after all ks. and it must be 

connected to both xn-1 and x1. 

* This algorithm is started by initializing matrix g[1:n][1:n] then setting x[2:n] to zero, 

and x[1] to 1. 
* Hamiltonian (2); is called first. 



 

 

Algorithm Hamiltonian(k) 
{ 

repeat 
{ // generate values for x[k] 

next value(k); if(x[k]=0) 

then return; if(k=n) then 

write(x[1:n]); else 

Hamiltonian(k+1); 

} until (false); 

} 

 

Algorithm nextvalue(k) 
{ 

repeat 
{ 

x[k]=(x[k]+1) mod (n+1); // next vertex 

if (x[k]=0) then return; 

if( g[x[k-1],x[k] <>0) then 

{ 

//is there an edge? 

For j=1 to k-1 do 

If (x[j]=x[k])then break; 

If(j=k)then 

If((k<n)or<((k=n) and g[x[n],x[1]]<>0))then return; 

} 

}until(false); 

} 



 

 

 
 

 

 

UNIT-6 
 
 
 

Definition: 

BRANCH AND BOUND 

The term branch and bound refers to all state search methods in which all 

children of the E-node are generated before any other live node can become the E- 

node 

 
    BFS:-  like state space search will be called FIFO 

    D Search:- like state space search will be called LIFO 

Example: 

A FIFO branch-and-bound algorithm searches the state space tree for eight 

queen problem as follows: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the above LIFO and FIFO branch-and-bound the selection rule for the next E- 

node does not give any preference to a node that has a very good change of getting the 

search to an answer node quickly 
 
 
 

Solution: 

Least cost( LC ) search: 
The search for an answer node can often speeded by using an “intelligent” 

ranking function c(.) for lives nodes. The next E-node is selected on the basis of this 

ranking function 



 

 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15  

 

 

Definition: 
A search strategy that uses a cost function       c(x)=f(h(x))+g(x) 

To select the next E-node would always choose for its next E-node with least c(.). Hence 

, such a such strategy is called an LC-search(least cost search) 

15-puzzle example: 
 

1)To determine whether the goal state is reachable from the initial sate. Let position(i) be 

the position number in the initial sate of the tile numbered i. Then position(lb) will denote 

the position of the empty spot 
 
 
 
 
 
 
 

 
 3 4 15 

2  5 12 

7 6 11 14 

8 9 10 13 

 

figure (a)                         figure (b)                             figure (c) 
 

 

For any state let(i) be the number of tiles j such that j<I and 

position(j)>position(i). 

 
e.g; Less(1)=0, less(4)=1& less(12)=6 

 
let x=1 if in the initial state the empty spot is at one of the shaded 

positions of figure(c). otherwise x=0. 

 
Theorem: 

 

The goal state of figure (b) is reachable from the initial state iff  i
16 

=less(i)+x is 
even. 

 
2. Cost Estimation 

one possible choice for g(x) is g(x)=number of nonblank tiles not in their 

goal position. 

 
Example: 

An LC search of the figure [ part of the state space tree for the puzzle] will begin 

by using node 1 as the E-node. 



 

 

 
 

a) All children of node 1 are generated and node 1 dies and leaves behind the 

line nodes 2,3,4 and 5. 

 
b) The next node to become E-node is a live node with least c^(x). Now, 

c^(2)=1+4, c^(3)=1+4, c^(4)=1+2, c^(5) =1+4. Hence node 4 becomes E- 

node. 
 

 
 

c) All children of node 1 are generated and node 1 dies and leaves behind the 

line nodes 2,3,4 and 5. 

 
d) The next node to become E-node is a live node with least c^(x). Now, 

c^(2)=1+4, c^(3)=1+4, c^(4)=1+2, c^(5) =1+4. Hence node 4 becomes E- 

node. 

 
Fourth node children are generated. The live nodes at this time are 

2,3,5,10,11, and 12. 

 
C^(10)=2+1, c^(11)=2+3, c^(12)2+3  Hence node 10 becomes E-node[since 

the live node with least c^ is node 10] 

 
e) from node 10, nodes 22, and 23 are generated next. Hence node 23 is the goal 

node, the search terminates[c^=0] 

 
figure(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2         3          4          5 
2          3          5          10          11           12 

 

 
 
 

10          11           12 
 

 

Node 4 dies 

22                   23 

Fig(b)                               Live nodes 2,3,5,10,11,12      fig(c) 
Least select node 10 



 

 

 
 

 
 

 
 

 
 

 
 

eg: 

 
 
 

 
problem: 

FIFO BRANCH-AND-BOUND 
[BFS+FIFO+Bounding Condition] 

 

 
 

We are given 

    n-jobs,one processor 

    job i has associated with a three tuple(pi,di,ti) 
Pi=penalty incurred when the processing not completed by the dead line di 
Ti=required units of processing time 

 
Objective is to select a subset J of n jobs such that all jobs in J can be 

completed by their deadlines & the penalty incurred is minimum among all 

possible subsets J.(a penalty can be incurred only on those jobs not in J). 

 
Let n=4; (p1,d1,t1)=(5,1,1);(p2,d2,t2);=(10,3,2) 

(p3,d3,t3)=(6,2,1);(p4,d4,t4);=(3,1,1) 

 
Solution space tree for the above problem instance is: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=Infeasible Subsets.                         Jobs index set 

{1,2,3,4} 
 

=Answer nodes                                  if x1=1;x2=4 in the tree 

J={1,4} 



 

 

Bounding: 

Cost Function: c(x) 

For any circular node x, c(x) is the minimum penalty corresponding to any node 
in the sub tree with root x. 

For example, c(x)= for sequence node 

C(3)=8; c(2)=9;c(1)=8 etc. 
 

A bound  c


(x): 

Let Sx be the subset of jobs selected for J at node x. if m=max{i | iSx), 

then  

c

(x)= i<m  Pi 

iSx 
. 

 
is an estimate for c(x). 

Example: 

For mode 7, S7  ={1,3} and m=3 
Therefore, 

i<3    Pi=P2=10 

IS7 

 
 

Upper bound u(x): (Cost of a minimum-cost answer node) 
 

 
 

U(x)=iSx  Pi 

 
Example: 

 

U(2)= iS2  Pi  = 
4
i=2  Pi = P2+P3+P4   =19 

S2={1} 
 

 
 

LC BRANCH AND BOUND 
(LCBB for given Job Schedule Problem Instance) 

 
Procedure: 

Step 1: Set upper =  or ∑ i=1 to n Pi 

Step 2: Node 1 is Enode. It is expanded. Children 2,3,4,5 are generated. 

Step 3: C

(x) is calculated with each child node x of node1. 

If u (x) is minimum than upper them upper will set to u(x). 
Hence upper becomes u(3) i.e. 14. 

C

(4), C


(5) > upper. So 4,5 nodes get deleted. 



 

 

Step 4: Next E-Node is 2. Since C

(2) < C


(3) (Least cost BB). 

Nodes 6,7,8 generated. 

C

(7) > upper and 8 is infeasible, both are killed. 

 
Step 5: Next E-Node is 6. Since out of all give nodes i.e. 6,3. 

C

(6) < C


(3) (i.e. Least cost BB) 

All its children one generated i.e. 12,13 but both are infeasible. 

 
Step 6: Next E-Node is 3. Node 9 (child of 3) is generated. u(9) < upper and 

C

(9) < upper. So upper becomes u(9) i.e. 8. 

Node 10 is killed. Since C

(10) > upper i.e. 8. 

 
Step 7: Next E-Node is node 9. It s child is infeasible. Here no live node remains. 

The Search terminates with node 9 representing minimum-cost as node. 

 

Procedure with Example 
 
 

X 1 2 3 4 5 6 7 8 9 10 11 

C() 0 0 5 15 21 0 10 - 5 11 15 

U() 24 19 14 18 21 9 10 16 8 1 15 
 

 Set upper =  (or upper = ∑ i=1 to n Pi) // upper bound on the cost of a minimum- 

cost and node. 
 

 Set node 1 as E-node. Generate child nodes. 

 
 Upper will be set to 19 than 14(when node 3 is generated) 

 

 
 

 If c(x) for current generated child is > upper than kill the nodes. Hence nodes 

4,5 get killed. 
 

 
 

 Node 2 becomes next E-node. Generate children nodes 6,7,8. u(6)=9; hence 

upper=9.  c(x) for node 7 > upper. So 7 get killed. Node 8 is infeasible so it’s 

killed. 
 

 
 

 Node 3 becomes E-node I nod 9,10 generated. U(9)=8; hence upper=8. 

C(10) > upper hence node 10 is killed. 

 
 Node 6 becomes E-node; its children are infeasible. 

 
 Node 9 becomes E-node; its child is infeasible. 

 
Hence minimum cost answer node is 9, it has a cost of 8. 



 

 

 
 

 
 

 

 Travelling salesman problem 
 

 

Let G=(V,E) be a directed graph 

Let Cij be the cost of edge<i,j>,Cij= if <i,j>E 

Let V=n. 

Every tour starts and ends at vertex 1. 
 

Objective: 

 
Solution: 

 

 

To find minimum cost tour. 

In order to use LC Branch&Bound to search the travelling salesperson tree,we 

need to define a cost function C()and other two functions C^(),u(). 

 
State space tree for the travelling salesperson problem with n=4 & i0 = i1 =1. 

 

 
1 

 
i1=2                                        i1=4 

2                                                   
i1=3 

3                                             4 

i2=3                             i2=4                        i2=2                i2=4           i2=2       i2=3 
 
 

5                                         6                                              7                              8              9                      10 

 

i3=4                             i3=3                             i3=4                 i3=2                 i3=3     i3=2 

11                                                     12                                       
13                           14               

15                   16 

 

 

A cost estimation C^(.)such that C(A)C^(A) for all node A is obtained by defining 

C^(A) to be the length of the path defined at node A. 
 

 
 

Procedure LCBB : 
 

Step 1:  A matrix is reduced by reducing rows and column  of the matrix. A row(column) 

is said to reduced iff it contains atleast one zero and all remaining entries are 

non-negative. 

 
Step 2:  C (.)  may be obtained by using the reduced cost matrix corresponding to G. 

C(.) =[sum of minimum row value]+[sum of minimum column value] 



[ 
 

 [ ] 

Step 3:  If an edge <i,j> in the tour, then change all entries in row i and column j of A to 

. 

Let A be a reduced cost matrix for node R. Let S be child of R. 

Step 4:   Set A( j,1 ) to  . 

Step 5:  Reduce all rows and columns in the resulting matrix except for rows and 
columns 

Containing only . Let the resulting matrix be B. 

 
Step 6:  Step 3  and Step 4  are valid as no tour in the sub tree S can contain edges of the 

type 

< i , k> or < k ,j >. 

 
Step 7:  If r is the total amount subtracted in Step 5 then C(S)=C(R)+A( i , j) + r. 

 
Step 8:  If leaf nodes C(. ) = c( ) is easily computed as each leaf defines a unique tour. 

Step 9:  For the upper bound function u, we may use u(R) =  for all nodes R. 

 
Example: Cost Matrix                                                        Reduce by Row wise 

 

 

       7       3     12      8   

] [
 

3              6     14      9 
5         8             6   18 

9         3      5           11 

18     14      9        8     

        4       0       9      5    

] 
3 

0             3     11      6                   3 

0        3            1    13                   5 

6        0       2           8                  3 

10        6       1       0                       8 

 

 
 
 

Reduce by Column wise 
 

 
        4       0       9      5 

0              3     11      6 

       1    13
 

0        3 

6        0       2            8 

10        6       1       0     


0        0        0       0      5 
 

 

ĉ(x)=[3+3+5+3+8]+[5}=27 



 

 

.   3 11 1 

0   1 8 

6  2  3 

10  1 0  

 

.   2 10 0 

0   1 8 

4  0  1 

10  1 0  

 

[ ] 
1 

0 
2 

0 

 

(1,2)- Make all the elements in 1
St 

row and 2
nd 

column to  and A(2,1) to  . 
 
 
 

                         












Reduce by Row wise: 
 

[ 
                          

] 
 

Reduce by Column wise 
 

(Same as previous matrix  since every Column has an element 0) 

 
C(S)=C(R )+A( i,j)+r. 

=27    +  4    + 3 = 34 



 

 

 

 
 

 



 

 

 

 

 



 



 


011 



 

 

 

11 
      
6   0  0 

 
 
      

 

        

       

0 

 



 

   

    



 

0        

     

 

29 + 0 + 0 = 29 

 

 
 

(1, 5, 4)        8 
 

 

            

0      2
1     

   

0    3               0 

   0   1
0     

        0 

                 0 
 

 
0     0    1 

28 + 0 + 1 = 29 

Since 
(1,5,3) 

&          = 29 

(1,5,4) 

 
LCBB try for 

both case 

(1, 5, 3,2 ) 
 

 
 
 
 
 
 
 
 
 



6                   0 
29 + 2 + 17 = 48 
 

 
11 

 

 
 

    
0       

    

   0    

10 
 

 

  

   

  

   

                 



 0     0 

29 + 0 + 0 = 29 
 

 
 

13 
12 

 

 
 

      
0
1 

 

          1 
0                      0 

   
0
3                 3 

                    0 
             

             


29 + 0 + 1 = 30 

             

             


0    0 

29 + 0 + 3 = 32 
 

 

Hence the four has the path nodes 1 -> 5-> 2-> 4 -> 2->1 

Cost that is 8+9+6+3+3 = 29 



 

 

 

 
 

 

 

STATE SPACE TREE GRENERATED BY PROCEDURE 

LCBB 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E1, E2, ………. E5 – are E nodes Enum  indicates order of selecting next E node. ( next E- 

node is selected based on Least Cost ie ĉ (x) ). 


