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UNIT-4 

DYNAMIC PROGRAMMING 
 
 

Dynamic Programming: We begin discussion of an important algorithm design technique, called dynamic program- 

ming (or DP for short). The technique is among the most powerful for designing algorithms for optimization 

problems. (This is true for two reasons. Dynamic programming solutions are based on a few common elements. 

Dynamic programming problems are typically optimization problems (find the minimum or maximum cost so- 

lution, subject to various constraints). The technique is related to divide-and-conquer, in the sense that it breaks 

problems down into smaller problems that it solves recursively. However, because of the somewhat different 

nature of dynamic programming problems, standard divide-and-conquer solutions are not usually efficient. The 

basic elements that characterize a dynamic programming algorithm are: 
 

Substructure: Decompose your problem into smaller (and hopefully simpler) subproblems. Express the solu- 

tion of the original problem in terms of solutions for smaller problems. 

Table-structure: Store the answers to the subproblems in a table. This is done because subproblem solutions 

are reused many times. 

Bottom-up computation: Combine solutions on smaller subproblems to solve larger subproblems. (Our text 

also discusses a top-down alternative, called memoization.) 

The most important question in designing a DP solution to a problem is how to set up the subproblem structure. 

This is called the formulation of the problem.  Dynamic programming is not applicable to all optimization 

problems. There are two important elements that a problem must have in order for DP to be applicable. 
 

Optimal substructure: (Sometimes called the principle of optimality.) It states that for the global problem to 

be solved optimally, each subproblem should be solved optimally. (Not all optimization problems satisfy 

this. Sometimes it is better to lose a little on one subproblem in order to make a big gain on another.) 

Polynomially many subproblems: An important aspect to the efficiency of DP is that the total number of 

subproblems to be solved should be at most a polynomial number. 
 

Strings: One important area of algorithm design is the study of algorithms for character strings. There are a number 

of important problems here.  Among the most important has to do with efficiently searching for a substring 

or generally a pattern in large piece of text. (This is what text editors and programs like “grep” do when you 

perform a search.) In many instances you do not want to find a piece of text exactly, but rather something that is 

similar. This arises for example in genetics research and in document retrieval on the web. One common method 

of measuring the degree of similarity between two strings is to compute their longest common subsequence. 
 

Longest Common Subsequence: Let us think of character strings as sequences of characters. Given two sequences 

X = hx1 , x2 , . . . , xm i and Z  = hz1 , z2 , . . . , zk i, we say that Z is a subsequence of X if there is a strictly in- 

creasing sequence of k indices hi1 , i2 , . . . , ik i (1 ≤ i1   < i2   < . . . < ik  ≤ n) such that Z = hXi1 
, Xi2 

, . . . , Xik 

i. For example, let X = hABRACADABRAi and let Z = hAADAAi, then Z is a subsequence of X . 

Given two strings X and Y , the longest common subsequence of X and Y  is a longest sequence Z  that is a 

subsequence of both X and Y . For example, let X = hABRACADABRAi and let Y  = hYABBADABBADOOi. 

Then the longest common subsequence is Z = hABADABAi. See Fig. 4 
 

X = 
 

LCS 
 

= Y 

 
Fig. 4: An example of the LCS of two strings X and Y . 



The Longest Common Subsequence Problem (LCS) is the following. Given two sequences X = hx1 , . . . , xm i 
and Y  = hy1 , . . . , yn i determine a longest common subsequence. Note that it is not always unique. For example 

the LCS of hAB C i and hBAC i is either hACi or hBC i. 
 

DP Formulation for LCS: The simple brute-force solution to the problem would be to try all possible subsequences 

from one string, and search for matches in the other string, but this is hopelessly inefficient, since there are an 

exponential number of possible subsequences. 

Instead, we will derive a dynamic programming solution.  In typical DP fashion, we need to break the prob- 

lem into smaller pieces.   There are many ways to do this for strings, but it turns out for this problem that 

considering all pairs of prefixes will suffice for us.  A prefix of a sequence is just an initial string of values, 

Xi  = hx1 , x2 , . . . , xi i. X0   is the empty sequence. 

The idea will be to compute the longest common subsequence for every possible pair of prefixes. Let c[i, j] 
denote the length of the longest common subsequence of Xi  and Yj . For example, in the above case we have 

X5 = hABRACi and Y6   = hYABBADi. Their longest common subsequence is hABAi. Thus, c[5, 6] = 3. 

Which of the c[i, j ] values do we compute?  Since we don’t know which will lead to the final optimum, we 
compute all of them. Eventually we are interested in c[m, n] since this will be the LCS of the two entire strings. 

The idea is to compute c[i, j] assuming that we already know the values of c[i0 , j 0 ], for i0  ≤ i and j 0   ≤ j (but 
not both equal). Here are the possible cases. 

 

 
Basis: c[i, 0] = c[j, 0] = 0. If either sequence is empty, then the longest common subsequence is empty. 

Last characters match: Suppose xi  = yj . For example: Let Xi  = hAB C Ai and let Yj   = hDAC Ai.  Since 

both end in A, we claim that the LCS must also end in A.  (We will leave the proof as an exercise.) Since 
the A is part of the LCS we may find the overall LCS by removing A from both sequences and taking the 

LCS of Xi−1 = hAB C i and Yj−1  = hDAC i which is hAC i and then adding A to the end, giving hAC Ai 
as the answer. (At first you might object: But how did you know that these two A’s matched with each 
other. The answer is that we don’t, but it will not make the LCS any smaller if we do.) This is illustrated 

at the top of Fig. 5. 
 

if xi  = yj  then c[i, j ] = c[i − 1, j − 1] + 1 
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Fig. 5: The possibe cases in the DP formulation of LCS. 

 
Last characters do not match: Suppose that xi  = yj . In this case xi  and yj  cannot both be in the LCS (since 

they would have to be the last character of the LCS). Thus either xi is not part of the LCS, or yj  is not part 

of the LCS (and possibly both are not part of the LCS). 

At this point it may be tempting to try to make a “smart” choice.  By analyzing the last few characters 

of Xi  and Yj , perhaps we can figure out which character is best to discard.  However, this approach is 

doomed to failure (and you are strongly encouraged to think about this, since it is a common point of 

confusion.)   Instead, our approach is to take advantage of the fact that we have already precomputed 

smaller subproblems, and use these results to guide us. 

In the first case (xi  is not in the LCS) the LCS of Xi and Yj  is the LCS of Xi−1 and Yj , which is c[i − 1, j]. 

In the second case (yj  is not in the LCS) the LCS is the LCS of Xi  and Yj −1  which is c[i, j − 1]. We do 
not know which is the case, so we try both and take the one that gives us the longer LCS. This is illustrated 

at the bottom half of Fig. 5. 
 

if xi  = yj  then c[i, j ] = max(c[i − 1, j], c[i, j − 1]) 

Combining these observations we have the following formulation: 

 

if i = 0 or j = 0, 

c[i, j ] =      c[i − 1, j − 1] + 1                           if i, j > 0 and xi  = yj , 

max(c[i, j − 1], c[i − 1, j])            if i, j > 0 and xi  = yj . 

 
Implementing the Formulation: The task now is to simply implement this formulation.  We concentrate only on 

computing the maximum length of the LCS. Later we will see how to extract the actual sequence. We will store 

some helpful pointers in a parallel array, b[0..m, 0..n].  The code is shown below, and an example is illustrated 

in Fig. 6 
 

 
 

Fig. 6: Longest common subsequence example for the sequences X = hB AC DBi and Y  = hB C DB i. The numeric 
table entries are the values of c[i, j ] and the arrow entries are used in the extraction of the sequence. 

 
 
 

                                                                                                                                                                                     Build LCS Table 

LCS(x[1..m], y[1..n]) {                        // compute LCS table 

int c[0..m, 0..n] 

for i = 0 to m                             // init column 0 

c[i,0] = 0; b[i,0] = SKIPX 



for j = 0 to n                             // init row 0 

c[0,j] = 0; b[0,j] = SKIPY 

for i = 1 to m                             // fill rest of table 

for j = 1 to n 

if (x[i] == y[j])                  // take X[i] (Y[j]) for LCS 

c[i,j] = c[i-1,j-1]+1;  b[i,j] = addXY 

else if (c[i-1,j] >= c[i,j-1])     // X[i] not in LCS 

c[i,j] = c[i-1,j];      b[i,j] = skipX 

else                               // Y[j] not in LCS 

c[i,j] = c[i,j-1];      b[i,j] = skipY 

return c[m,n]                              // return length of LCS 

} 
 

 

 
 

 
getLCS(x[1..m], y[1..n], b[0..m,0..n]) { 

LCSstring = empty string 

Extracting the LCS 

i = m; j = n                               // start at lower right 

while(i != 0 && j != 0)                    // go until upper left 

switch b[i,j] 

case addXY:                        // add X[i] (=Y[j]) 

add x[i] (or equivalently y[j]) to front of LCSstring 

i--;  j--;  break 

case skipX: i--; break            // skip X[i] 

case skipY: j--; break            // skip Y[j] 

return LCSstring 

} 



 
The running time of the algorithm is clearly O(mn)  since there are two nested loops with m and n iterations, 

respectively. The algorithm also uses O(mn)  space. 
 

Extracting the Actual Sequence: Extracting the final LCS is done by using the back pointers stored in b[0..m, 0..n]. 

Intuitively b[i, j ] = addX Y  means that X [i] and Y [j ] together form the last character of the LCS. So we take 

this common character, and continue with entry b[i − 1, j − 1] to the northwest (-). If b[i, j ] = skipX , then we 

know that X [i] is not in the LCS, and so we skip it and go to b[i − 1, j ] above us (↑). Similarly, if b[i, j ] = skipY , 

then we know that Y [j] is not in the LCS, and so we skip it and go to b[i, j − 1] to the left (←). Following these 
back pointers, and outputting a character with each diagonal move gives the final subsequence. 

 
 

Lecture 5: Dynamic Programming: Chain Matrix Multiplication 
 

Read: Chapter 15 of CLRS, and Section 15.2 in particular. 
 

Chain Matrix Multiplication: This problem involves the question of determining the optimal sequence for perform- 

ing a series of operations. This general class of problem is important in compiler design for code optimization 

and in databases for query optimization.  We will study the problem in a very restricted instance, where the 

dynamic programming issues are easiest to see. 

Suppose that we wish to multiply a series of matrices 
 

A1 A2  . . . An 

 

Matrix multiplication is an associative but not a commutative operation. This means that we are free to paren- 
thesize the above multiplication however we like, but we are not free to rearrange the order of the matrices. Also 

recall that when two (nonsquare) matrices are being multiplied, there are restrictions on the dimensions. A p × q 
matrix has p rows and q columns. You can multiply a p × q matrix A times a q × r matrix B, and the result 
will be a p × r matrix C . (The number of columns of A must equal the number of rows of B.) In particular for 
1 ≤ i ≤ p and 1 ≤ j ≤ r, 

 

C [i, j ] = 
Xq

 

 
k=1 

 

A[i, k]B[k, j ]. 

This corresponds to the (hopefully familiar) rule that the [i, j ] entry of C is the dot product of the ith (horizontal) 

row of A and the j th (vertical) column of B. Observe that there are pr total entries in C and each takes O(q) time 

to compute, thus the total time to multiply these two matrices is proportional to the product of the dimensions, 

pqr. 
 

A      *         B          =          C 

 
q                    =                        Multiplication 

p                                        p                      time = pqr 
r 

 

q                                          r 

 
Fig. 7: Matrix Multiplication. 

 

Note that although any legal parenthesization will lead to a valid result, not all involve the same number of 

operations. Consider the case of 3 matrices: A1   be 5 × 4, A2   be 4 × 6 and A3   be 6 × 2. 

multCost[((A1 A2 )A3 )]    =  (5 · 4 · 6) + (5 · 6 · 2) = 180, 

multCost[(A1 (A2 A3 ))]    =  (4 · 6 · 2) + (5 · 4 · 2) = 88. 
 

 
Even for this small example, considerable savings can be achieved by reordering the evaluation sequence. 



n−1 

 
Chain Matrix Multiplication Problem: Given a sequence of matrices A1 , A2 , . . . , An and dimensions p0 , p1 , . . . , pn 

where Ai   is of dimension pi−1  × pi , determine the order of multiplication (represented, say, as a binary 
tree) that minimizes the number of operations. 

Important Note: This algorithm does not perform the multiplications, it just determines the best order in which 

to perform the multiplications. 
 

Naive Algorithm: We could write a procedure which tries all possible parenthesizations. Unfortunately, the number 

of ways of parenthesizing an expression is very large. If you have just one or two matrices, then there is only 

one way to parenthesize. If you have n items, then there are n − 1 places where you could break the list with 
the outermost pair of parentheses, namely just after the 1st item, just after the 2nd item, etc., and just after the 

(n − 1)st item. When we split just after the kth item, we create two sublists to be parenthesized, one with k 

items, and the other with n − k items. Then we could consider all the ways of parenthesizing these. Since these 
are independent choices, if there are L ways to parenthesize the left sublist and R ways to parenthesize the right 

sublist, then the total is L · R. This suggests the following recurrence for P (n), the number of different ways of 
parenthesizing n items: 

 

P (n) = 
1                                             if n = 1, 

k=1 P (k)P (n − k)            if n ≥ 2. 

This is related to a famous function in combinatorics called the Catalan numbers (which in turn is related to the 

number of different binary trees on n nodes). In particular P (n)  =  C (n − 1), where C (n) is the nth Catalan 
number: 

C (n) = 
  1      2n   

. 
n + 1     n 

 

Applying Stirling’s formula (which is given in our text), we find that C (n) ∈ Ω(4n /n3/2 ). Since 4n   is exponen- 
tial and n3/2   is just polynomial, the exponential will dominate, implying that function grows very fast. Thus, 
this will not be practical except for very small n. In summary, brute force is not an option. 

 

Dynamic Programming Approach: This problem, like other dynamic programming problems involves determining 

a structure (in this case, a parenthesization). We want to break the problem into subproblems, whose solutions 

can be combined to solve the global problem. As is common to any DP solution, we need to find some way to 

break the problem into smaller subproblems, and we need to determine a recursive formulation, which represents 

the optimum solution to each problem in terms of solutions to the subproblems. Let us think of how we can do 

this. 
 

Since matrices cannot be reordered, it makes sense to think about sequences of matrices. Let Ai..j  denote the 

result of multiplying matrices i through j . It is easy to see that Ai..j  is a pi−1 × pj  matrix. (Think about this for 
a second to be sure you see why.) Now, in order to determine how to perform this multiplication optimally, we 

need to make many decisions. What we want to do is to break the problem into problems of a similar structure. 

In parenthesizing the expression, we can consider the highest level of parenthesization.  At this level we are 

simply multiplying two matrices together. That is, for any k, 1 ≤ k ≤ n − 1, 

A1..n = A1..k · Ak+1..n . 
 

Thus the problem of determining the optimal sequence of multiplications is broken up into two questions: how 

do we decide where to split the chain (what is k?) and how do we parenthesize the subchains A1..k and Ak+1..n ? 

The subchain problems can be solved recursively, by applying the same scheme. 

So, let us think about the problem of determining the best value of k.  At this point, you may be tempted to 

consider some clever ideas. For example, since we want matrices with small dimensions, pick the value of k 

that minimizes pk .  Although this is not a bad idea, in principle.  (After all it might work.  It just turns out 

that it doesn’t in this case. This takes a bit of thinking, which you should try.) Instead, as is true in almost all 

dynamic programming solutions, we will do the dumbest thing of simply considering all possible choices of k, 

and taking the best of them. Usually trying all possible choices is bad, since it quickly leads to an exponential 



 
number of total possibilities. What saves us here is that there are only O(n2 ) different sequences of matrices. 

n
 

(There are   
2 = n(n − 1)/2 ways of choosing i and j to form Ai..j  to be precise.) Thus, we do not encounter 

the exponential growth. 
 

Notice that our chain matrix multiplication problem satisfies the principle of optimality, because once we decide 

to break the sequence into the product A1..k · Ak+1..n , we should compute each subsequence optimally. That is, 
for the global problem to be solved optimally, the subproblems must be solved optimally as well. 

 

Dynamic Programming Formulation: We will store the solutions to the subproblems in a table, and build the table 

in a bottom-up manner. For 1 ≤ i ≤ j ≤ n, let m[i, j ] denote the minimum number of multiplications needed 
to compute Ai..j . The optimum cost can be described by the following recursive formulation. 

 

Basis: Observe that if i = j then the sequence contains only one matrix, and so the cost is 0. (There is nothing 

to multiply.) Thus, m[i, i] = 0. 

Step: If i < j , then we are asking about the product Ai..j . This can be split by considering each k, i ≤ k < j , 
as Ai..k  times Ak+1..j . 

The optimum times to compute Ai..k  and Ak+1..j are, by definition, m[i, k] and m[k + 1, j], respectively. 
We may assume that these values have been computed previously and are already stored in our array. Since 

Ai..k  is a pi−1  × pk    matrix, and Ak+1..j  is a pk   × pj   matrix, the time to multiply them is pi−1 pk pj . 
This suggests the following recursive rule for computing m[i, j]. 

 
 

It is not hard to convert this rule into a procedure, which is given below. The only tricky part is arranging the 

order in which to compute the values. In the process of computing m[i, j] we need to access values m[i, k] and 

m[k + 1, j ] for k lying between i and j . This suggests that we should organize our computation according to the 

number of matrices in the subsequence. Let L = j −i+1 denote the length of the subchain being multiplied. The 
subchains of length 1 (m[i, i]) are trivial to compute. Then we build up by computing the subchains of lengths 
2, 3, . . . , n.  The final answer is m[1, n].  We need to be a little careful in setting up the loops. If a subchain of 

length L starts at position i, then j = i + L − 1. Since we want j ≤ n, this means that i + L − 1 ≤ n, or in 

other words, i ≤ n − L + 1. So our loop for i runs from 1 to n − L + 1 (in order to keep j in bounds). The code 
is presented below. 

The array s[i, j ] will be explained later.  It is used to extract the actual sequence.  The running time of the 

procedure is Θ(n3 ).  We’ll leave this as an exercise in solving sums, but the key is that there are three nested 

loops, and each can iterate at most n times. 
 

Extracting the final Sequence: Extracting the actual multiplication sequence is a fairly easy extension.  The basic 

idea is to leave a split marker indicating what the best split is, that is, the value of k that leads to the minimum 



 
                                                                                                                                                                   Chain Matrix Multiplication 

Matrix-Chain(array p[1..n]) { 

array s[1..n-1,2..n] 

for i = 1 to n do m[i,i] = 0;              // initialize 

for L = 2 to n do {                        // L = length of subchain 

for i = 1 to n-L+1 do { 

j = i + L - 1; 

m[i,j] = INFINITY; 

for k = i to j-1 do {              // check all splits 

q = m[i, k] + m[k+1, j] + p[i-1]*p[k]*p[j] 

if (q < m[i, j]) { 

m[i,j] = q; 

s[i,j] = k; 

} 

} 

} 

} 

return m[1,n] (final cost) and s (splitting markers); 

} 
 

 
 

value of m[i, j ].  We can maintain a parallel array s[i, j ] in which we will store the value of k providing the 

optimal split. For example, suppose that s[i, j ]  =  k.  This tells us that the best way to multiply the subchain 

Ai..j  is to first multiply the subchain Ai..k  and then multiply the subchain Ak+1..j , and finally multiply these 

together. Intuitively, s[i, j ] tells us what multiplication to perform last. Note that we only need to store s[i, j] 

when we have at least two matrices, that is, if j > i. 

The actual multiplication algorithm uses the s[i, j ] value to determine how to split the current sequence. Assume 

that the matrices are stored in an array of matrices A[1..n], and that s[i, j ] is global to this recursive procedure. 

The recursive procedure Mult does this computation and below returns a matrix. 
 

 
Mult(i, j) { 

if (i == j)                            // basis case 

return A[i]; 

else { 

k = s[i,j] 

X = Mult(i, k)                     // X = A[i]...A[k] 

Extracting Optimum Sequence 

Y = Mult(k+1, j)                   // Y = A[k+1]...A[j] 

return X*Y;                        // multiply matrices X and Y 

} 

} 

 

 

In the figure below we show an example. This algorithm is tricky, so it would be a good idea to trace through 

this example (and the one given in the text).  The initial set of dimensions are h5, 4, 6, 2, 7i meaning that we 

are multiplying A1    (5 × 4) times A2    (4 × 6) times A3    (6 × 2) times A4    (2 × 7).  The optimal sequence 
is ((A1 (A2 A3 ))A4 ). 

 
 

Lecture 6: Dynamic Programming: Minimum Weight Triangulation 
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Fig. 9: Chain Matrix Multiplication Example. 

 
 

Polygons and Triangulations: Let’s consider a geometric problem that outwardly appears to be quite different from 

chain-matrix multiplication, but actually has remarkable similarities. We begin with a number of definitions. 

Define a polygon to be a piecewise linear closed curve in the plane. In other words, we form a cycle by joining 

line segments end to end. The line segments are called the sides of the polygon and the endpoints are called the 

vertices. A polygon is simple if it does not cross itself, that is, if the sides do not intersect one another except 

for two consecutive sides sharing a common vertex. A simple polygon subdivides the plane into its interior, its 

boundary and its exterior. A simple polygon is said to be convex if every interior angle is at most 180 degrees. 

Vertices with interior angle equal to 180 degrees are normally allowed, but for this problem we will assume that 

no such vertices exist. 

 
Given a convex polygon, we assume that its vertices are labeled in counterclockwise order P  = hv1 , . . . , vn i. 

We will assume that indexing of vertices is done modulo n, so v0   = vn . This polygon has n sides, vi−1 vi . 

Given two nonadjacent sides vi  and vj , where i < j −1, the line segment vi vj  is a chord. (If the polygon is simple 
but not convex, we include the additional requirement that the interior of the segment must lie entirely in the 

interior of P .) Any chord subdivides the polygon into two polygons: hvi , vi+1 , . . . , vj i, and hvj , vj+1 , . . . , vi i. 
A triangulation of a convex polygon P is a subdivision of the interior of P into a collection of triangles with 

disjoint interiors, whose vertices are drawn from the vertices of P . Equivalently, we can define a triangulation 

as a maximal set T of nonintersecting chords. (In other words, every chord that is not in T intersects the interior 

of some chord in T .)  It is easy to see that such a set of chords subdivides the interior of the polygon into a 

collection of triangles with pairwise disjoint interiors (and hence the name triangulation). It is not hard to prove 

(by induction) that every triangulation of an n-sided polygon consists of n − 3 chords and n − 2 triangles. 
Triangulations are of interest for a number of reasons. Many geometric algorithm operate by first decomposing 
a complex polygonal shape into triangles. 

In general, given a convex polygon, there are many possible triangulations. In fact, the number is exponential in 

n, the number of sides. Which triangulation is the “best”? There are many criteria that are used depending on 

the application. One criterion is to imagine that you must “pay” for the ink you use in drawing the triangulation, 

and you want to minimize the amount of ink you use. (This may sound fanciful, but minimizing wire length is an 



 
important condition in chip design. Further, this is one of many properties which we could choose to optimize.) 

This suggests the following optimization problem: 
 

Minimum-weight convex polygon triangulation: Given a convex polygon determine the triangulation that 

minimizes the sum of the perimeters of its triangles. (See Fig. 11.) 
 

 
 
 
 
 
 
 

A triangulation                      Lower weight triangulation 

 
Fig. 11: Triangulations of convex polygons, and the minimum weight triangulation. 

 
Given three distinct vertices vi , vj , vk , we define the weight of the associated triangle by the weight function 

 

w(vi , vj , vk ) = |vi vj | + |vj vk | + |vk vi |, 
 

where |vi vj | denotes the length of the line segment vi vj . 

Dynamic Programming Solution: Let us consider an (n + 1)-sided polygon P  = hv0 , v1 , . . . , vn i.  Let us assume 
that these vertices have been numbered in counterclockwise order. To derive a DP formulation we need to define 

a set of subproblems from which we can derive the optimum solution. For 0 ≤ i < j ≤ n, define t[i, j ] to be the 
weight of the minimum weight triangulation for the subpolygon that lies to the right of directed chord vi vj , that 

is, the polygon with the counterclockwise vertex sequence hvi , vi+1 , . . . , vj i.  Observe that if we can compute 
this quantity for all such i and j , then the weight of the minimum weight triangulation of the entire polygon can 

be extracted as t[0, n]. (As usual, we only compute the minimum weight. But, it is easy to modify the procedure 

to extract the actual triangulation.) 
 

As a basis case, we define the weight of the trivial “2-sided polygon” to be zero, implying that t[i, i + 1] = 0. 

In general, to compute t[i, j ], consider the subpolygon hvi , vi+1 , . . . , vj i, where j > i + 1. One of the chords of 
this polygon is the side vi vj . We may split this subpolygon by introducing a triangle whose base is this chord, 
and whose third vertex is any vertex vk , where i < k < j . This subdivides the polygon into the subpolygons 

hvi , vi+1 , . . . vk i and hvk , vk+1 , . . . vj i whose minimum weights are already known to us as t[i, k] and t[k, j]. 

In addition we should consider the weight of the newly added triangle 4vi vk vj . Thus, we have the following 
recursive rule: 

 

t[i, j ] =      
0                                                                          if j = i + 1 

mini<k<j (t[i, k] + t[k, j] + w(vi vk vj ))            if j > i + 1. 
 

The final output is the overall minimum weight, which is, t[0, n]. This is illustrated in Fig. 12 

Note that this has almost exactly the same structure as the recursive definition used in the chain matrix multipli- 

cation algorithm (except that some indices are different by 1.) The same Θ(n3 ) algorithm can be applied with 

only minor changes. 
 

Relationship to Binary Trees: One explanation behind the similarity of triangulations and the chain matrix multipli- 

cation algorithm is to observe that both are fundamentally related to binary trees. In the case of the chain matrix 

multiplication, the associated binary tree is the evaluation tree for the multiplication, where the leaves of the 

tree correspond to the matrices, and each node of the tree is associated with a product of a sequence of two or 

more matrices. To see that there is a similar correspondence here, consider an (n + 1)-sided convex polygon 

P = hv0 , v1 , . . . , vn i, and fix one side of the polygon (say v0 vn ). Now consider a rooted binary tree whose root 
node is the triangle containing side v0 vn , whose internal nodes are the nodes of the dual tree, and whose leaves 



 

vn 

v0                         
vj 

 
 

 
vi 

 
 

Triangulate 
at cost t[i,k] 

 

 
Triangulate 

at cost t[k,j] 
 
 
 

cost=w(vi ,vk, vj ) 
 

vk 

 

Fig. 12: Triangulations and tree structure. 
 
 

correspond to the remaining sides of the tree. Observe that partitioning the polygon into triangles is equivalent 

to a binary tree with n leaves, and vice versa. This is illustrated in Fig. 13. Note that every triangle is associated 

with an internal node of the tree and every edge of the original polygon, except for the distinguished starting 

side v0 vn , is associated with a leaf node of the tree



Once  you  see  this  connection.  Then  the  following two  observations follow easily.  Observe that  the 

associated binary tree  has  n  leaves,  and  hence (by  standard results on  binary trees)  n  − 1  internal 

nodes.  Since each internal node other than the root has one edge entering it, there are n − 2 edges between 
the internal nodes. Each internal node corresponds to one triangle, and each edge between internal nodes 
corresponds to one chord of the 

triangulati 

on. 


