
 

 

 

 

 
 
 
 

Overview: 

    Divide and Conquer 

    Master theorem 

UNIT-2 

DIVIDE & CONQUER 

    Master theorem based analysis for 

  Binary Search 
  Merge Sort 

  Quick Sort 

 
Divide and Conquer 

 

Basic Idea: 
 

 

1.   Decompose problems into sub instances. 

2.   Solve sub instances successively and independently. 

3.   Combine the sub solutions to obtain the solution to the original 

problem. 
 

In order to look into the efficiency of the Divide and Conquer lets look into the 

 
Multiplication of two n-digit Numbers 
Traditional Multiplication: 
Say we are multiplying 382 with 695(n=3) 

 
382 

*  695 
 
 
 
 

- - - - - 

 
Essentially, we are multiplying 1 digit with n other digits and then adding the n numbers, 

which can give us a solution of at most 2n digits. 

 
There are n additions, each of O(n) time at most, which gives us the running time of the 

algorithm as O(n
2
) 

 
!!Using Divide and Conquer to multiply n-digit numbers 

We will write the two n-digit numbers as follows: 

(10
n/2

X + Y) (10
n/2

W+Z)   =10
n
XW + (XZ + YW) 10

n/2 
+YZ           ---(1) 

 
That is we are converting the multiplication of two n-digit numbers into multiplication of 

four n/2 digit numbers, plus some extra work involved in additions. We are recursively 

calling multiplication and performing some additions in every recursion. 

 
Let T (n) be the running time of multiplying two n-digit numbers. 



 

 

 

 

 

Then in our case, 

T (n) = 4T (n/2) +O (n) 

 
    Four multiplications of n/2 digit numbers 

 Addition is going to be between numbers that have atmost 2n digits. Thus 

addition can be O (n). 
 

 
 

Recursively substituting the value of T (n): 

T (n) = 4 [4T (n/4) + O (n/2)] +O (n) 

=16 T (n/4) + 4O (n/2) + O (n) 

- 

- 

- 

=C T (1) + - - - - 

 
 Master ’s  Th eore m  
Let T(n) be the running time of an algorithm with an input size of n; 
Suppose we can run the algorithm in such a way that we make ‘a’ recursive calls every 

time with an input size of ‘n/b’ and do some extra work in every recursion (additions and 

subtractions). 

Such that T (n) can be represented as: 

T (n) = a T (n/b) + O (n
k
), 

 
Then, 

If log ba>k, T (n) =O (n
log 

b
a
)       (recursive calls dominates) 

If log ba=k, T (n) =O (n
k
log n)     (almost equal work in rec. calls and in extra work) 

If log ba<k, T (n) =O (n
k
)              (Extra work dominates) 

 
In our multiplication problem: 

T (n) = 4T (n/2) +O (n) 

 
A=4, b=2 

Log24=2, k=1 
 

Since algorithm is dominated by recursive calls and the running time is O (n
2
). 

 
But this is as good as our traditional multiplication algorithm. Since we now know that 

multiplications dominate the running time, if we can reduce the number of 

multiplications to three, which can bring down our T(n) by 25%. 

 
To calculate (1), we just need the following 3 multiplications separately: 

1. (X+Y)(W+Z)            2 additions and one multiplication 

2.XW 

3.YZ 



 

 

 

 

2 

 

Then we can calculate 

XZ+YW=(X+Y)(W+Z)-XW-YZ 

Thus we use three multiplications at the expense of some extra additions and 

subtractions, which run in constant time( each of O(n) time) 
 

Thus, 
 

 

T(n)=3T(n/2) + O(n) 
 

Applying Master’s theorem, 

A=3,b=2,k=1 

Thus, T(n)=O(n
log  3

) 
 

Since log 3 ~ 1.5, 
2 

We have reduced the total number of recursive calls in our program. For very large n, it will work well 
 

but in actual implementation, we hardly code to gain advantage out if this feature. 
 

 
 

Binary Search 
 

Goal: Searching for nth value in a sorted list of length n. 

(Divide the list into two and recursively search in the individual lists half the size) 

 
Again, 

Let T(n) be the running time of the algorithm. Then, 

T(n)=T(n/2) + O(1) 

In O(1) time we divide the list into two  halves(n/2) that run  in T(n/2) time. 

 
Using Master’s theorem, 

A=1,b=2 

Log21=0 

K=0; 
So, 

T(n)=O(log n) 

 
Merge Sort 

Goal: Splitting the element list into 2 lists, sort them and merge them. 
T(n)=2T(n/2) + O(n) 

 
Here, the hidden constant is greater than the hiddent constant in the merge sort because 

while dividing the lists into two different arrays and then sorting them, we are allocating 

extra space and subsequently, copying into the original array. 

 
Using Master’s theorem, 

A=2,b=2,k=1 

Log22=1 

So, T(n)=O(n log n) 



 

 

 

 

 

Quicksort 
Goal: Pick one element as the partition element. Put all the elements smaller than it, to 
the left of it and all elements greater than it, to the right of it. On the lists left and right of 

the partition element recursively call Qsort. 

 
Say the list is: 8,3,6,9,2,4,7,5 

Partition element:5 

8, 3, 6, 9, 2, 4, 7, 5 

front                     Last 
 

 

8 in the worng place, 7 fine. 

 
8, 3, 6, 9, 2, 4, 7, 5 

 

 
 
 

front             Last 
 

 

4 ,3 ,6 ,9 , 2 ,8 ,7 ,5 
 

 
 
 

front     last 
 
 

 

4, ,3, 2, 9, 6, 8, 7, 5 
 

 
 

front             last 
 

4, 3 ,2 ,9 ,6 ,8 ,7 ,5 
 
 
 

last           front 
 

Now swap front with 5 and we have 5 in place. 

4,3,2,5,6,8,7,9 

 
Thus the only extra space utilized here is the temporary variable used for swapping. 



 

 

 

 

 
 

In te worst case, we might end up choosing a partition element which is the first element 

in our list. 

In that case T(n)=O(n
2
) 

 
To make sure this rarely happens: 

1.   Pick a random partition element. 

2.   Probablity of picking a good partition element is as low as the probability of 

picking a bad one. So, they will even out. 
 

 
 

There are n possible partition elements 

 

Element Split Prob(element) 
1 0,n-1 1/n 

2 1,n-2 1/n 

3  1/n 
 
 
 

 
N                                              n-1,0                                        1/n 

 

Now, 

T (n) = 1/n [ T(0) + T(n-1) + O(n) ]   + 

1/n [ T(1) + T(n-2) + O(n) ] + 

1/n [ T(2) + T(n-3) + O(n) ] + 

…… 

…… 

…… 

1/n [T (n-1) + T (0) + O (n)] 
 

 
 

n * T[n]   {2 k=0
n-1

T(k)} + O(n
2
) A 

 
Substitute n = n-1, 

 

(n-1) * T[(n-1)]  = {2 k=0
n-1

T(k)} + O((n-1)
2
)B 

 
Subtract A from B 

 
n T(n) - (n-1)T(n-1) = 2 T(n-1) + O(n) 

 
n T(n) = n+1 T(n-1) + O(n) 

 
T(n) = ((n+1)/n )T(n-1) + O(1) 

 
Divide by (n+1) 



 

 

 

 

 

T(n)/(n+1)  = [T(n-1) ]/ n  + O(1/n)  C 
 

Let, 
 

 

S(n) = T(n)/(n+1)  D 
 

S(n) = S(n-1) + O(1/n) 

 
This can be written as a sum, 

= S(n-2) + O(1/n-1) + O(1/n) 

= S(n-3) + O(1/n-2) + O(1/n-1) + O(1/n) 
 

 
 

S(n) = O(k=1  n  
1/k) 

 
= O( Hn) 

 
S(n) = T(n)/(n+1) = O (ln n) E 

 
Substitute D in C 

 
T(n) = S(n) . (n+1) 

 

use E, 

T(n) = O (ln n) . (n+1) 

T(n) = O (n lg n ) 
 
 
 
 

Strassen’s algorithm for Matrix multiplication: 
 

The standard method of matrix multiplication of two n x n matrices takes 
 

T(n) = O(n
3
). 

 

 

The following is a simple algorithm to implement n x n matrix 

multiplication: 
 
 

 

Result = 0;           ( initialize the array of Result  ) 

for i = 1 to n 

for j = 1 to n 

for k = 1 to n 
Result [i, j] += A[i, k] * B[k, j]; 



 

 

 

 

 
 

 

Stassen’s algorithm is a Divide-and-Conquer algorithm that beat the bound. 

The usual multiplication of two n x n matrices takes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

8     n/2 * n/2 matrix multiples plus 

4     n/2 * n/2 matrix additions 
 

T(n) = 8T(n/2) + O(n
2
) 

Plug in      a = 8, b = 2, k = 2      →   logb
a  

=3    →   T(n)= O(n
3
) 

 

 

Strassen showed how two matrices can be multiplied using only 7 

multiplications and 24 additions: 
 

 

m1 = (a21 + a22 – a11) * (b22 – b12 + b11) 

m2 = a11 * b11 

m3 = a12 * b21 

m4 = (a11 – a21) * (b22 – b12) 
m5 = (a21 + a22) * (b12 – b11) 
m6 = (a12 – a21 + a11 – a22) * b22 

m7 = a22 * (b11 + b22 – b12 – b21) 
 

 
 
 
 

T(n) = 7T(n/2) + O(n
2
) 

↓ 

6 times as much as in the other algorithm 


