
UNIT-1 
 

INTRODUCTION TO  ALGORITH & ITS ANALYSIS 
 

Algorithm: 

∗  Mis-spelled logarithm!. 
∗  The  first most  popular  algorithm  is the  Euclid’s algorithm  for computing  GCD of 

two numbers. 

∗  A well-defined procedure  that  transfers  an input  to an output. 
∗  Not a program  (but  often specified like it):  An algorithm  can often be implemented 

in several ways. 

∗  Knuth’s,  Art of Computer  Programming,  vol.1, is a good resource on the history  of 
algorithms!.   He says that  an algorithm  is a finite set of rules that  gives a sequence 

of  operations  for solving a specific type  of problem.   Algorithm  has five important 

features: 

Finiteness:    must  terminate after  finite number  of steps. 

Definiteness:    each step is precisely described. 

Input:   algorithm  has zero or more inputs. 

Output:   has at least one output!. 

Effectiveness:     Each  operation  should  be sufficiently basic such that  they  can be 

done in finite amount of time using pencil and paper. 

–  Design: The focus of this course is on how to design good algorithms  and how to analyze 

their   efficiency.   We  will study  methods/ideas/tricks for developing  fast  and  efficient 

algorithms. 

–  Analysis:    Abstract/mathematical  comparison   of algorithms    (without  actually   imple- 

menting,  prototyping  and testing  them). 
 

• This  course will require  proving the  correctness  of algorithms  and  analyzing  the  algorithms. 
Therefore  MATH is the main tool. Math  is needed in three  ways: 

 

–  Formal  specification of problem 

–  Analysis of correctness 

–  Analysis of efficiency (time,  memory  use,...) 
 

Revise mathematical  induction,  what  is a proof ?, logarithms,  sum of series, elementary  num- 

ber theory, permutations,  factorials,   binomial coefficients, harmonic numbers, Fibonacci num- 

bers and generating  functions [Knuth  vol 1. or his book Concrete Mathematics  is an excellent 

resource]. 
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• Hopefully the course will show that algorithms matter! 
 

 

1.2     Model of Computation 
 

• Predict the resources used by the algorithm:  running  time and the space. 
 

• To analyze the running  time we need mathematical model of a computer: 

Random-access  machine (RAM)  model: 

–  Memory consists of an infinite array of cells. 

–  Each cell can store at most one data item (bit, byte, 

a record,  ..). 

–  Any memory cell can be accessed in unit  time. 

–  Instructions are executed  sequentially 

–  All basic instructions  take unit  time: 
 

∗  Load/Store 
∗  Arithmetics  (e.g.  +, −, ∗, /) 

∗  Logic (e.g.  >) 

 

• Running  time of an algorithm  is the number  of RAM instructions  it executes. 

• RAM model is not realistic,  e.g. 

–  memory is finite (even though  we often imagine it to be infinite when we program) 

–  not all memory accesses take the same time (cache, main memory,  disk) 

–  not all arithmetic operations  take the same time (e.g.  multiplications are expensive) 

–  instruction pipelining 

–  other  processes 
 

• But  RAM  model often  is enough  to  give relatively  realistic  results  (if we don’t  cheat  too 
much). 

 

 

1.3     Asymptotics 
 
We do not want to compute  a detailed  expression  of the run time of the algorithm,  but  rather  will 

like to get a feel of what it is like? We will like to see the trend  - i.e. how does it increase when the 

size of the  input  is increased  - is it linear  in the  size of the  input?   or quadratic?  or exponential? 

or who knows? The asymptotics  essentially  capture  the rate  of growth  of the underlying  functions 

describing  the  run-time.    Asymptotic  analysis  assumes  that  the  input  size is large (since  we are 

interested  how the  running  time increases  when the  problem  size grows) and  ignores the  constant 

factors  (which are usually  dependent  on the  hardware, programming  smartness  or tricks, compile- 

time-optimizations). 

David Mount suggests the following simple definitions  based on limits for functions  describing 

the running  time of algorithms.  We will describe the formal definitions  from [3] later. 

Let f (n) and g(n) be two positive functions  of n. What  does it mean when we say that  both  f 
and g grow at roughly the same rate  for large n (ignoring  the constant factors),  i.e. 

 

lim  
 f (n) 

= c, 
n→∞ g(n) 



1.3.  ASYMPTOTICS  

 
Asymptotic  Form 

 
Relationship Definition 

f (n) ∈ Θ(g(n)) f (n) ≡ g(n) 0 < limn→∞  
f (n)   < ∞ 
g(n) 

f (n) ∈ O(g(n)) f (n) ≤ g(n) 0 ≤ limn→∞  
f (n)   < ∞ 
g(n) 

f (n) ∈ Ω(g(n)) f (n) ≥ g(n) 0 < limn→∞  
f (n)

 
g(n) 

f (n) ∈ o(g(n)) f (n) < g(n) limn→∞  
f (n)  

= 0 
g(n) 

f (n) ∈ ω(g(n)) f (n) > g(n) limn→∞  
f (n)  

= ∞ 

 n 

i=0   i                                                                                                    d 

 

 

where c is a constant and is neither 0 or ∞. We say that  f (n) ∈ θ(g(n)), i.e. they are asymptotically 

equivalent.    What  about  f (n) does not  grow significantly  faster  than  g(n)  or grows significantly 
faster?  Here  is  the table  of  definitions  from  David  Mount.   

 

 
 
 
 
 
 
 
 
 
 

                        P                                                
g(n)   

Example:  T (n) = 
 
 
 

 
and 0 < 1/6 < ∞. 

x=1 x2  ∈ Θ(n3 ). Why? 
 

lim  
 T (n) 

=   lim   
(n3 + 3n2 + 2n)/6 

= 1/6, 
n→∞   n3          n→∞               n3

 

Just  for fun show that  T (n) ∈ O(n4 ) or T (n) = n3/3 + O(n2 ). 
 

 

1.3.1     O-notation 
 

O(g(n)) = {f (n) : ∃ c, n0  > 0 such that  f (n) ≤ cg(n) ∀n ≥ n0 } 
 

• O(·) is used to asymptotically upper bound a function. 

• O(·) is used to bound  worst-case running  time. 
 
 
 
 

cg(n) 
 

f(n) 
 

 
 
 
 
 
 
 
 
 
 
 

n 
0
 

 

 

• Examples: 
 

–  1/3n2 − 3n ∈ O(n2) because 1/3n2 − 3n ≤ cn2 if c ≥ 1/3 − 3/n which holds for c = 1/3 

and n > 1. 

–  Let  p(n)  = 
Pd      a ni   be  a  polynomial  of degree  d and  assume  that  a   > 0.   Then 

p(n) ∈ O(nk ), where k ≥ d is a constant.  What  are c and n0  for this? 
 

• Note: 
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–  When we say ―the  running  time is O(n2 )‖ , we mean that  the worst-case running  time is 

O(n2) — best case might be better. 

–  We often abuse the notation: 
 

∗  We write f (n) = O(g(n)) instead  of f (n) ∈ O(g(n))! 

∗  We often  use O(n) in equations:   e.g.  2n2  + 3n + 1 = 2n2  + O(n) (meaning  that 
2n2 + 3n + 1 = 2n2 + f (n) where f (n) is some function  in O(n)). 

∗  We use O(1) to denote  a constant. 
 

 

1.3.2     Ω-notation  (big-Omega) 
 

Ω(g(n)) = {f (n) : ∃ c, n0  > 0 such that  cg(n) ≤ f (n) ∀n ≥ n0 } 
 

• Ω(·) is used to asymptotically lower bound a function. 
 

 
f(n) 

 

cg(n) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n 
0
 

 

 

• Examples: 
 

–  1/3n2 − 3n = Ω(n2) because 1/3n2 − 3n ≥ cn2 if c ≤ 1/3 − 3/n which is true  if c = 1/6 

and n > 18. 

–  Let  p(n)  = 
Pd      a ni   be  a  polynomial  of degree  d and  assume  that  a   > 0.   Then 

p(n) ∈ Ω(nk ), where k ≤ d is a constant.  What  are c and n0  for this? 

–  Prove or disprove:  g(n) = Ω(f (n)) if and only if f (n) = O(g(n)). 
 

• Note: 
 

–  When  we say ―the  running  time  is Ω(n2 )‖ , we mean that  the  best case running  time  is 

Ω(n2 ) — the worst case might be worse. 
 

 

1.3.3     Θ-notation (Big-Theta) 
 

Θ(g(n)) = {f (n) : ∃ c1 , c2 , n0  > 0 such that  c1 g(n) ≤ f (n) ≤ c2 g(n) ∀n ≥ n0 } 
 

• Θ(·) is used to asymptotically tight bound a function. 



1.4.  HOW  TO  ANALYZE RECURRENCES?  

n 

n 

 
 
 

 
c g(n) 

2 

 

f(n) 
 

 

c g(n) 
1 

 
 
 
 
 
 
 
 

n 
0
 

 

 

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) = Ω(g(n)) 

 

• Examples: 

–  6n log n + 
√

n log2 n = Θ(n log n): 

∗  We need to find n0, c1, c2 such that  c1 n log n ≤ 6n log n + 
√

 

 
 
 

 
log2 n ≤ c2n log n for 

n > n
 

c n log n ≤ 6 n log n + 
√ 

log2 n ⇒ c ≤ 6
 √

n     . Ok if we choose c
  

= 6 and 

0    1                                                     n 1           + 
log n                                   

1
 

l 
√ 

nn n0  = 1. 6n log n + 
√

n log2 n ≤ c2 n log n ⇒ 6 + 
og

 

Yes, log n ≤ 
√   

if n ≥ 2. 

∗  So c1 = 6, c2 = 7 and n0  = 2 works. 
Pd

 

≤ c2. Is it ok to choose c2 = 7? 

–  Let  p(n)  = i=0 
ai ni   be  a  polynomial  of degree  d and  assume  that  ad   > 0.   Then 

p(n) ∈ Θ(nk ), where k = d is a constant. 
 

 

1.4     How  to  analyze Recurrences? 
 
There  are many  ways of solving recurrences.   I personally  prefer the  recursion  tree  method,  since 

it is  visual!   Here the  recurrence  is depicted  in a tree,  where the  nodes of the  tree  represent  the 

cost incurred  at  the  various  levels of the  recursion.   We illustrate  this  method  using the  following 

recurrence  (so called the recurrence  used in the Masters  method). 

Let a ≥ 1, b > 1 and c > 0 be constants  and let T (n) be the recurrence 
 

³ n ́  
 
 
 

defined for integer n ≥ 0. Then 

T (n) = aT + cnk , 
b 

 

Case 1  a > bk  then  T (n) = Θ(nlogb  a ). 

Case 2  a = bk  then  T (n) = Θ(nk  logb n). 
 

Case 3  a < bk  then  T (n) = Θ(nk ). 

The proof is fairly simple (of course I would have made  some errors  on what  I have written 

below). We need to sort of visualize it using the recursion  tree. 
 

Level  1:     a subproblems  are formed, each of size n/b, and the total  cost is cnk . 



 

 

Level  2:     a2  subproblems  are formed, each of size n/b2 , and the total  cost is a ∗ c(n/b)k . 

Level  3:     a3  subproblems  are formed, each of size n/b3 , and the total  cost is a2 ∗ c(n/b2 )k
 

. 
 

... 
 

loLgbenve)l  logb n:    alogb n  subproblems  are  formed,  each of constant  size and  the  total  cost 

is about alogb nc(     n       k . 


