
UNIT-1

INTRODUCTION TO ALGORITH & ITS ANALYSIS

Algorithm:

∗ Mis-spelled logarithm!.
∗ The first most popular algorithm is the Euclid’s algorithm for computing GCD of

two numbers.

∗ A well-defined procedure that transfers an input to an output.
∗ Not a program (but often specified like it): An algorithm can often be implemented

in several ways.

∗ Knuth’s, Art of Computer Programming, vol.1, is a good resource on the history of
algorithms!. He says that an algorithm is a finite set of rules that gives a sequence

of operations for solving a specific type of problem. Algorithm has five important

features:

Finiteness: must terminate after finite number of steps.

Definiteness: each step is precisely described.

Input: algorithm has zero or more inputs.

Output: has at least one output!.

Effectiveness: Each operation should be sufficiently basic such that they can be

done in finite amount of time using pencil and paper.

– Design: The focus of this course is on how to design good algorithms and how to analyze

their efficiency. We will study methods/ideas/tricks for developing fast and efficient

algorithms.

– Analysis: Abstract/mathematical comparison of algorithms (without actually imple-

menting, prototyping and testing them).

• This course will require proving the correctness of algorithms and analyzing the algorithms.
Therefore MATH is the main tool. Math is needed in three ways:

– Formal specification of problem

– Analysis of correctness

– Analysis of efficiency (time, memory use,...)

Revise mathematical induction, what is a proof ?, logarithms, sum of series, elementary num-

ber theory, permutations, factorials, binomial coefficients, harmonic numbers, Fibonacci num-

bers and generating functions [Knuth vol 1. or his book Concrete Mathematics is an excellent

resource].

5

• Hopefully the course will show that algorithms matter!

1.2 Model of Computation

• Predict the resources used by the algorithm: running time and the space.

• To analyze the running time we need mathematical model of a computer:

Random-access machine (RAM) model:

– Memory consists of an infinite array of cells.

– Each cell can store at most one data item (bit, byte,

a record, ..).

– Any memory cell can be accessed in unit time.

– Instructions are executed sequentially

– All basic instructions take unit time:

∗ Load/Store
∗ Arithmetics (e.g. +, −, ∗, /)

∗ Logic (e.g. >)

• Running time of an algorithm is the number of RAM instructions it executes.

• RAM model is not realistic, e.g.

– memory is finite (even though we often imagine it to be infinite when we program)

– not all memory accesses take the same time (cache, main memory, disk)

– not all arithmetic operations take the same time (e.g. multiplications are expensive)

– instruction pipelining

– other processes

• But RAM model often is enough to give relatively realistic results (if we don’t cheat too
much).

1.3 Asymptotics

We do not want to compute a detailed expression of the run time of the algorithm, but rather will

like to get a feel of what it is like? We will like to see the trend - i.e. how does it increase when the

size of the input is increased - is it linear in the size of the input? or quadratic? or exponential?

or who knows? The asymptotics essentially capture the rate of growth of the underlying functions

describing the run-time. Asymptotic analysis assumes that the input size is large (since we are

interested how the running time increases when the problem size grows) and ignores the constant

factors (which are usually dependent on the hardware, programming smartness or tricks, compile-

time-optimizations).

David Mount suggests the following simple definitions based on limits for functions describing

the running time of algorithms. We will describe the formal definitions from [3] later.

Let f (n) and g(n) be two positive functions of n. What does it mean when we say that both f
and g grow at roughly the same rate for large n (ignoring the constant factors), i.e.

lim
 f (n)

= c,
n→∞ g(n)

1.3. ASYMPTOTICS

Asymptotic Form

Relationship Definition

f (n) ∈ Θ(g(n)) f (n) ≡ g(n) 0 < limn→∞
f (n) < ∞
g(n)

f (n) ∈ O(g(n)) f (n) ≤ g(n) 0 ≤ limn→∞
f (n) < ∞
g(n)

f (n) ∈ Ω(g(n)) f (n) ≥ g(n) 0 < limn→∞
f (n)

g(n)

f (n) ∈ o(g(n)) f (n) < g(n) limn→∞
f (n)

= 0
g(n)

f (n) ∈ ω(g(n)) f (n) > g(n) limn→∞
f (n)

= ∞

 n

i=0 i d

where c is a constant and is neither 0 or ∞. We say that f (n) ∈ θ(g(n)), i.e. they are asymptotically

equivalent. What about f (n) does not grow significantly faster than g(n) or grows significantly
faster? Here is the table of definitions from David Mount.

 P
g(n)

Example: T (n) =

and 0 < 1/6 < ∞.

x=1 x2 ∈ Θ(n3). Why?

lim
 T (n)

= lim
(n3 + 3n2 + 2n)/6

= 1/6,
n→∞ n3 n→∞ n3

Just for fun show that T (n) ∈ O(n4) or T (n) = n3/3 + O(n2).

1.3.1 O-notation

O(g(n)) = {f (n) : ∃ c, n0 > 0 such that f (n) ≤ cg(n) ∀n ≥ n0 }

• O(·) is used to asymptotically upper bound a function.

• O(·) is used to bound worst-case running time.

cg(n)

f(n)

n
0

• Examples:

– 1/3n2 − 3n ∈ O(n2) because 1/3n2 − 3n ≤ cn2 if c ≥ 1/3 − 3/n which holds for c = 1/3

and n > 1.

– Let p(n) =
Pd a ni be a polynomial of degree d and assume that a > 0. Then

p(n) ∈ O(nk), where k ≥ d is a constant. What are c and n0 for this?

• Note:

i=0 i d

– When we say ―the running time is O(n2)‖ , we mean that the worst-case running time is

O(n2) — best case might be better.

– We often abuse the notation:

∗ We write f (n) = O(g(n)) instead of f (n) ∈ O(g(n))!

∗ We often use O(n) in equations: e.g. 2n2 + 3n + 1 = 2n2 + O(n) (meaning that
2n2 + 3n + 1 = 2n2 + f (n) where f (n) is some function in O(n)).

∗ We use O(1) to denote a constant.

1.3.2 Ω-notation (big-Omega)

Ω(g(n)) = {f (n) : ∃ c, n0 > 0 such that cg(n) ≤ f (n) ∀n ≥ n0 }

• Ω(·) is used to asymptotically lower bound a function.

f(n)

cg(n)

n
0

• Examples:

– 1/3n2 − 3n = Ω(n2) because 1/3n2 − 3n ≥ cn2 if c ≤ 1/3 − 3/n which is true if c = 1/6

and n > 18.

– Let p(n) =
Pd a ni be a polynomial of degree d and assume that a > 0. Then

p(n) ∈ Ω(nk), where k ≤ d is a constant. What are c and n0 for this?

– Prove or disprove: g(n) = Ω(f (n)) if and only if f (n) = O(g(n)).

• Note:

– When we say ―the running time is Ω(n2)‖ , we mean that the best case running time is

Ω(n2) — the worst case might be worse.

1.3.3 Θ-notation (Big-Theta)

Θ(g(n)) = {f (n) : ∃ c1 , c2 , n0 > 0 such that c1 g(n) ≤ f (n) ≤ c2 g(n) ∀n ≥ n0 }

• Θ(·) is used to asymptotically tight bound a function.

1.4. HOW TO ANALYZE RECURRENCES?

n

n

c g(n)

2

f(n)

c g(n)
1

n
0

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and f (n) = Ω(g(n))

• Examples:

– 6n log n +
√

n log2 n = Θ(n log n):

∗ We need to find n0, c1, c2 such that c1 n log n ≤ 6n log n +
√

log2 n ≤ c2n log n for

n > n

c n log n ≤ 6 n log n +
√

log2 n ⇒ c ≤ 6
 √

n . Ok if we choose c

= 6 and

0 1 n 1 +
log n

1

l
√

nn n0 = 1. 6n log n +
√

n log2 n ≤ c2 n log n ⇒ 6 +
og

Yes, log n ≤
√

if n ≥ 2.

∗ So c1 = 6, c2 = 7 and n0 = 2 works.
Pd

≤ c2. Is it ok to choose c2 = 7?

– Let p(n) = i=0
ai ni be a polynomial of degree d and assume that ad > 0. Then

p(n) ∈ Θ(nk), where k = d is a constant.

1.4 How to analyze Recurrences?

There are many ways of solving recurrences. I personally prefer the recursion tree method, since

it is visual! Here the recurrence is depicted in a tree, where the nodes of the tree represent the

cost incurred at the various levels of the recursion. We illustrate this method using the following

recurrence (so called the recurrence used in the Masters method).

Let a ≥ 1, b > 1 and c > 0 be constants and let T (n) be the recurrence

³ n ́

defined for integer n ≥ 0. Then

T (n) = aT + cnk ,
b

Case 1 a > bk then T (n) = Θ(nlogb a).

Case 2 a = bk then T (n) = Θ(nk logb n).

Case 3 a < bk then T (n) = Θ(nk).

The proof is fairly simple (of course I would have made some errors on what I have written

below). We need to sort of visualize it using the recursion tree.

Level 1: a subproblems are formed, each of size n/b, and the total cost is cnk .

Level 2: a2 subproblems are formed, each of size n/b2 , and the total cost is a ∗ c(n/b)k .

Level 3: a3 subproblems are formed, each of size n/b3 , and the total cost is a2 ∗ c(n/b2)k

.

...

loLgbenve)l logb n: alogb n subproblems are formed, each of constant size and the total cost

is about alogb nc(n k .

