
 

 

 
               
 
 

 

UNIT 1 

PART A: Overview of compilation 
 

 
 

1.   OVERVIEW OF LANGUAGE PROCESSING SYSTEM 
 

 
 

1.1 Preprocessor 
A preprocessor produce input to compilers. They may perform the following functions. 

1.  Macro processing: A  preprocessor may allow  a  user  to  define  macros 

that are short hands for longer constructs. 

2.   File inclusion: A preprocessor may include header files into the program text. 

3.   Rational  preprocessor:  these  preprocessors  augment  older  languages 

with  more modern flow-of-control and data structuring facilities. 

4.  Language Extensions: These preprocessor attempts to add capabilities to 

the language by certain amounts to build-in macro 

 
1.2Compiler 

Compiler is a translator program that translates a program written in (HLL) 

the source program  and  translates it  into  an  equivalent  program  in  (MLL) the 

target  program.  As  an  important  part  of  a  compiler  is  error showing to  the 

programmer. 
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Executing  a  program  written n  HLL programming  language  is  basically of  two  parts.  the 

source  program  must  first  be  compiled  translated  into  a  object  program.  Then  the  results 

object program is loaded into a memory executed. 
  

1.3ASSEMBLER:  programmers  found  it  difficult  to  write  or  read  programs  in  machine 

language. They begin to use a mnemonic (symbols) for each machine instruction, which 

they would subsequently translate into machine language. Such a mnemonic machine 

language  is  now  called  an  assembly  language.  Programs  known  as  assembler  were 

written to  automate  the  translation  of  assembly language  in  to  machine  language.  The 

input to an assembler program is called source program, the output is a machine language 

translation (object program). 

 
1.4 INTERPRETER:  An  interpreter  is  a  program  that  appears  to  execute  a 

source program as if it were machine language. 

 

 
 

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also 

uses interpreter. The process of interpretation can be carried out in following phases. 

1. Lexical analysis 
2. Syntax analysis 

3. Semantic analysis 

4. Direct Execution 

 
Advantages: 

 
               Modification   of  user  program  can  be  easily  made  and  implemented  as 

execution proceeds. 

    Type of object that denotes various may change dynamically. 

 Debugging a program and finding errors is simplified task for a program used 

for interpretation. 

               The interpreter for the language makes it machine independent. 
 

Disadvantages: 

 
    The execution of theprogramis slower. 

    Memory consumption is more. 



 

 

 

 
 
 
 
 

1.5 Loader and Link-editor: 
Once  the  assembler  procedures  an  object  program,  that  program  must  be  p laced 

into memory and executed. The assembler could place the object program directly in memory 

and   transfer   control   to   it,   thereby   causing   the   machine   language   program   to   be 

execute. This would waste core by leaving the assembler in memory while the user‟ s program 

was being executed. Also the programmer would have to retranslate his program with each 

execution, thus wasting translation time. To overcome this problems of wasted translation time 

and memory. System programmers developed another component called loader. 
 
 
 

“A loader is  a  program  that  places programs into  memory and  prepares them  for 

execution.” It would be more efficient if subroutines could be translated into object form 

the loader  could ”relocate”  directly behind  the  user‟ s program.  The  task  of  

adjusting programs  o they  may  be   placed   in   arbitrary  core  locations   is   called   

relocation. Relocation  loaders perform four functions. 
 

 
 

1.6 TRANSLATOR 
 

A translator is a program that takes as input a program written in one language and 

produces as output a program in another language. Beside program translation, the translator 

performs  another  very  important  role,  the   error-detection.  Any  violation   of  d   HLL 

specification would be detected and reported to the programmers. Important role of translator 

are: 
 
 
 
 

the hll. 

1 Translating the hll program input into an equivalent ml program. 

2  Providing diagnostic messages wherever the  programmer violates  specification of 

 

1.6.1TYPE OF TRANSLATORS:- 

    Interpreter 

    Compiler 

    preprocessor 

 
1.6.2 LIST OF COMPILERS 

 

 

1.   Ada compilers 

2.   ALGOL compilers 

3.   BASIC compilers 

4.   C# compilers 

5.   C compilers 

6.   C++ compilers 

7.   COBOL compilers 



 

 

 
 

8.   Java compilers 
2.  PHASES OF A COMPILER: 

 
A  compiler  operates  in  phases.  A  phase  is  a  logically  interrelated operation  that  takes 

source  program  in  one  representation  and  produces  output  in  another representation. The 

phases of a compiler are shown in below 

There are two phases of compilation. 

a.   Analysis (Machine Independent/Language Dependent) 

b.   Synthesis (Machine Dependent/Language independent) 

Compilation process is partitioned into no-of-sub processes called „phases‟ . 
 

 
 

 

Lexical Analysis:- 
LA or Scanners reads the source program one character at a time, carving the 

source program into a sequence of automatic units called tokens. 

 
Syntax Analysis:- 

The  second  stage  of  translation  is  called  syntax  analysis  or  parsing.  In  this 
phase expressions, statements, declarations etc… are identified by using the results of lexical 

analysis.  Syntax  analysis  is  aided  by  using  techniques  based  on  formal  grammar  of  the 



 

 

 
 
 
 
 
 
 

programming language. 

Intermediate Code Generations:- 

An intermediate representation of the final machine language code is produced. 

This phase bridges the analysis and synthesis phases of translation. 

 
Code Optimization:- 

This is optional phase described to  improve the intermediate code so that the 
output runs faster and takes less space. 

 
Code Generation:- 

The last phase of translation is code generation. A number of optimizations to 

Reduce the length of  machine language program are carried out  during this  phase. The 

output of the code generator is the machine language program of the specified computer. 

 
Table Management (or) Book-keeping:- 

This  is  the  portion  to  keep  the  names  used  by  the  program  and  records 

essential information about each. The data structure used to record this information called a 

„Symbol 

Table‟ . 
 

Error Handlers:- 
It is invoked when a flaw error in the source program is detected. The output of LA is a 

stream of tokens, which is passed to the next phase, the syntax analyzer or parser. The SA 

groups  the  tokens  together  into  syntactic  structure  called as  expression.  Expression  may 

further  be  combined  to  form  statements.  The  syntactic structure can be regarded as a tree 

whose leaves are the token called as parse trees. 

 
The parser has two functions. It checks if the tokens from lexical analyzer, occur in  pattern 

that  are permitted  by the  specification for the  source language.  It  also imposes on tokens a 

tree-like structure that is used by the sub-sequent phases of the compiler. 

 
Example, if a program contains the expression A+/B after lexical analysis this expression might 

appear to the syntax analyzer as the token sequence id+/id. On seeing the /, the  syntax  analyzer 

should   detect   an   error   situation,   because   the   presence   of   these   two  adjacent  binary 

operators violates the formulations rule of an expression. 

 
Syntax analysis is to make explicit the hierarchical structure of the incoming token stream by 

identifying which parts of the token stream should be grouped. 

 
Example, (A/B*C has two possible interpretations.) 

1- divide A by B and then multiply by C or 

2- multiply B by C and then use the result to divide A. 

Each of these two interpretations can be represented in terms of a parse tree. 

Intermediate Code Generation:- 
The  intermediate  code  generation  uses  the  structure  produced  by  the  syntax 



 

 

 
 
 
 
 
 
 

analyzer  to  create  a  stream  of  simple  instructions.  Many  styles  of  intermediate  code  are 

possible. One common style uses instruction with one operator and a small number of 

operands.The output of the syntax analyzer is some representation of a parse tree. The 

intermediate code generation phase transforms this parse tree into an intermediate language 

representation of the source program. 

 
Code Optimization:- 

This is optional phase described to improve the intermediate code so 
that the output runs faster and takes less space. Its output is another intermediate code 

program that does the same job as the original, but in a way that saves time and / or 

spaces. 

/*  1, Local Optimization:- 

There  are  local  transformations  that  can  be  applied  to  a 

program to make an improvement. For example, 
If A > B  goto L2 

Goto L3 L2 : 
This can be replaced by a single statement If A <  B  goto  L3 

Another  important  local  optimization  is  the  elimination  of  common 

sub-expressions 

A := B + C + D 

E := B + C + F 
Might be evaluated as 

T1 := B   +   C 

A  := T1  +   D 

E   := T1 +   F 

Take this advantage of the common sub-expressions B + C. 

Loop Optimization:- 

Another  important  source  of  optimization  concerns  about  increasing the 
speed  of loops.  A  typical  loop  improvement  is  to  move  a computation that produces the 

same  result  each  time  around  the  loop to a point, in the program just before the loop is 

entered.*/ 

 
Code generator :- 

C  produces  the  object  code  by  deciding  on  the  memory  locations  for  data, 
selecting code to access each data and selecting the registers in which each computation is to be 

done. Many computers have only a few high speed registers in which computations can be 

performed quickly. A good code generator would attempt to utilize registers as efficiently as 

possible. 

Error Handing :- 
One  of  the  most  important  functions  of  a  compiler  is  the  detection  and 

reporting of errors in the source program. The error message should allow the programmer to 

determine exactly where the errors have occurred. Errors may occur in all or the phases of a 



 

 

 
 
 
 
 
 
 

compiler. 

Whenever a phase of the compiler discovers an error, it must report the error to the error 

handler, which issues an appropriate diagnostic msg. Both of the table-management and error- 

Handling routines interact with all phases of the compiler. 

 
Example: 

 
position:= initial + rate *60 

 
 

 
Lexical Analyzer 

 

 
Tokens                    id1 = id2 + id3 * id4 

 

 
Syntsx Analyzer 

 

 
= 

 
id1                                                    + 

 
id2                                                    * 

 
id3                                                    id4 

 

 
Semantic Analyzer 

 
 

= 

 
id1                                                    + 

 
id2                                                    * 

 
id3                                                    60 

 
int to real 

 

Intermediate Code Generator 

temp1:=  int  to  real 

(60) temp2:= id3 * 

temp1 temp3:= id2 + 

temp2 

id1:= temp3. 



 

 

 
 
 
 
 
 
 

 
Code Optimizer 

 
 
 
 

Temp1: = id3 * 60.0 
 
 

Id1:= id2 +temp1 
 
 
 
 

Code Generator 
 
 
 
 

 
MOVF     id3, 

r2        MULF 

*60.0,         r2 

MOVF     id2, 

r2        ADDF 

r2 

,   r1   MOVF 

r1, id1 

 

2.1 LEXICAL ANALYZER: 
 

The LA is the first phase of a compiler. Lexical analysis is called as linear analysis or scanning. 

In this phase the stream of characters making up the source program is read from left-to-right and 

grouped into tokens that are sequences of characters having a collective meaning. 
 
 
 
 
 
 

 

 



 

 

 
 
 
 
 
 
 

Upon receiving a „get  next token‟   command form the parser, the lexical 

analyzer reads the input character until it can identify the next token. The LA return to the 

parser representation for the token it has found. The representation will be an integer code, 

if the token is a simple construct such as parenthesis, comma or colon. 

 
LA may also perform certain secondary tasks as the user interface. One such task is 

striping out from the source program the commands and white spaces in the form of blank, tab 

and new line characters. Another is correlating error message from the compiler with the source 

program. 
 
 

 

2.1.1Lexical Analysis Vs Parsing: 
 

 

Lexical analysis Parsing 
A Scanner simply turns an input String (say a file) 

into   a   list   of   tokens.   These   tokens represent 

things like identifiers, parentheses, operators etc. 

 
The     lexical     analyzer    (the     "lexer")    parses 

individual symbols from the source code file into 

tokens. From there, the "parser" proper turns those 

whole tokens into sentences of your grammar 

A parser converts this  list of  tokens into  a Tree- 

like   object   to   represent   how   the   tokens   fit 

together      to       form      a       cohesive       whole 

(sometimes referred to as a sentence). 

 
A    parser    does    not    give    the    nodes    any 

meaning   beyond   structural   cohesion.   The next 

thing to do is extract meaning from this structure 

(sometimes        called      contextual 

analysis). 

 

 

2.1.2Token, Lexeme, Pattern: 
 

Token:  Token is  a  sequence of  characters that  can  be treated as  a  single logical  entity. 

Typical tokens are, 

1) Identifiers 2) keywords 3) operators 4) special symbols 5) constants 

 
Pattern: A set of strings in the input for which the same token is produced as output. This set of 

strings is described by a rule called a pattern associated with the token. 
Lexeme: A lexeme is a sequence of characters in the source program that is matched by the 

pattern for a token. 

Example: 

Description of token 

 
Token lexeme pattern 

const const const 

if if If 



 

 

 
 

 
 

 
 

 
 

 
  
 

 
 
 
 
 
 

 
relation <,<=,= ,< >,>=,> < or <= or = or < > or >= or  letter 

followed by letters & digit 

i pi any numeric constant 

nun 3.14 any character b/w “and “except" 

literal "core" pattern 

 

 

A pattern is a rule describing the set of lexemes that can represent a particular token 

in source program. 
 

 
 

2.1.3 Lexical Errors: 
 

Lexical  errors  are  the  errors  thrown  by  the lexer  when  unable  to  continue.  Which 

means that there‟ s no way to recognise a lexeme as a valid token for you lexer? Syntax errors, on 

the other side, will be thrown by your scanner when a given set of already recognized valid 

tokens don't match any of the right sides of  your grammar rules. Simple panic-mode error 

handling system requires that we return to a high-level parsing function when a parsing or 

lexical error is detected. 

 
Error-recovery actions are: 

    Delete one character from the remaining input. 

    Insert a missing character in to the remaining input. 

    Replace a character by another character. 

    Transpose two adjacent characters. 
 

 
3.   Difference Between Compiler And Interpreter: 

1.   A  compiler  converts  the  high  level  instruction  into  machine  language  while  an 

interpreter converts the high level instruction into an intermediate form. 

2.   Before   execution,   entire   program   is   executed   by   the   compiler   whereas   after 

translating the first line, an interpreter then executes it and so on. 

3.   List  of  errors  is  created  by  the  compiler  after  the  compilation  process  while  an 
interpreter stops translating after the first error. 

4.   An  independent  executable  file  is  created  by  the  compiler  whereas  interpreter  is 

required by an interpreted program each time. 

5.   The compiler produce object code whereas interpreter does not produce object code.  In 

the  process of compilation  the  program is  analyzed  only once  and  then  the  code  is 

generated whereas source program is interpreted every time it  is to  be executed and 

every  time  the  source  program  is  analyzed.  Hence  interpreter  is  less  efficient  than 

compiler. 



 

 

 
 

 
 
 
 
 
 
 

6.   Examples  of  interpreter:  A  UPS  Debugger  is  basically  a  graphical  source  level 

debugger but it contains built in C interpreter which can handle multiple source files. 
7.  Example of compiler: Borland c compiler or Turbo C compiler compiles the programs 

written in C or C++. 
 

 
4. REGULAR EXPRESSIONS: 

 
4.1: SPECIFICATION  OF TOKENS 

 
There are 3  specifications of tokens: 

1) Strings 

2) Language 

3) Regular  expression 
 

Strings and  Languages 
 

An alphabet or character class is a finite set of symbols. 

A string over an alphabet is a finite sequence of symbols drawn from that alphabet. 

A language is any countable set of strings over some fixed alphabet. 

 
In language theory, the terms "sentence" and "word" are often used as synonyms for 

"string." The length of a string s, usually written |s|, is the number of occurrences of symbols in s. 

For example, banana is a string of length six. The empty string, denoted ε, is the string of length 

zero. 
 

Operations on strings 
The following string-related terms are commonly used: 

 
1.  A prefix of string s is any string obtained by removing zero or more symbols from the end of 

strings. 

For example, ban is a prefix of banana. 

 
2.  A suffix of string s is any string obtained by removing zero or more symbols from the 

beginning of s. 

For example, nana is a suffix of banana. 

 
3.  A substring of s is obtained by deleting any prefix and any suffix from s. 

For example, nan is a substring of banana. 
 

4.  The proper prefixes, suffixes, and substrings of a string s are those prefixes, suffixes, and 

substrings, respectively of s that are not ε or not equal to s itself. 
 

5.  A subsequence of s is any string formed by deleting zero or more not necessarily consecutive 

positions of s. 
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For example, baan is a subsequence of banana. 

 
Operations on languages: 
The following  are the operations that can be applied to languages: 
1.Union 

2.Concatenation 

3.Kleene closure 4.Positive closure 

The following  example shows the operations on strings: 

Let L={0,1}  and S={a,b,c} 

1. Union                   : L U S={0,1,a,b,c} 
2. Concatenation     : L.S={0a,1a,0b,1b,0c,1c} 
3. Kleene closure     : L

*
={ ε,0,1,00….} 

 

4. Positive closure  : L
+
={0,1,00….} 

 

 
 
 
 

4.2Regular  Expressions: 

 
Each regular expression r denotes a language L(r). 

 
Here are the rules that define the regular expressions over some alphabet Σ and the languages that 

those expressions denote: 
 

1. ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole member is the 

empty string. 
 

2. If„a‟ is a symbol in Σ, then „a‟ is a regular expression, and L(a) = {a}, that is, the 

language with one string, of length one, with „a‟ in its one position. 
 

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then, 

 
o (r)|(s) is a regular expression denoting the language L(r) U L(s). 
o (r)(s) is a regular expression denoting the language L(r)L(s). 
o (r)* is a regular expression denoting (L(r))*. 
o (r) is a regular expression denoting L(r). 

 
4. The unary operator * has highest precedence and is left associative. 

 
5. Concatenation has second highest precedence and is left associative. 

has lowest precedence and is left associative. 

0 
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4.2.1 REGULAR DEFINITIONS: 
For notational convenience, we may wish to give names to regular expressions and to 

define regular expressions using these names as if they were symbols. 

Identifiers are  the  set  or  string of  letters  and  digits  beginning  with  a  letter.  The 

following regular definition provides a precise specification for this class of string. 

Example-1, 
Ab*|cd? Is equivalent to (a(b*)) | (c(d?)) Pascal identifier 
Letter  -  A | B | ……| Z | a | b |……| z| Digits  -  0 | 1 | 2 | …. | 9 

Id    -  letter (letter / digit)* 

 
Shorthand‟ s 

Certain  constructs  occur  so  frequently in  regular expressions  that  it  is  convenient  to 

introduce notational shorthands for them. 
 

 
 

1. One or more instances (+): 

 
o The unary postfix operator + means “ one or more instances of” . 

 

o If r is a regular expression that denotes the language L(r), then ( r )
+ 

is a regular 
expression that denotes the language (L (r ))

+
 

o Thus the regular expression a
+ 

denotes the set of all strings of one or more a‟ s. 
 

o The operator 
+ 

has the same precedence and associativity as the operator 
*
. 

 

 
 

2. Zero or one instance ( ?): 

 
- The unary postfix operator ? means “zero or one instance of”. 

 
- The notation r? is a shorthand for r | ε. 

 
- If „r‟  is a regular expression, then ( r )? is a regular expression that denotes the language L( r 

) U { ε }. 
 
 
 
 

3. Character Classes: 

 
- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression 

a | b | c. 

- Character class such as [a – z] denotes the regular expression a | b | c | d | ….|z. 

- We can describe identifiers as being strings generated by the regular expression, 

[A–Za–z][A–Za–z0–9]* 



 

 

If → if 

then → then 

else → else 
relop 
id 

→ 
→ 

<|<=|=|<>|>|>= 

letter(letter|digit)
*
 

num → digit
+ 

(.digit
+
)?(E(+|-)?digit

+
)? 

 

 
 
 
 
 
 

 

Non-regular  Set 
A language  which cannot be described by any regular expression is a non-regular set. 

Example:  The    set  of  all  strings  of  balanced  parentheses  and  repeating  strings  cannot  be 

described by a regular  expression. This set can be specified by a context-free grammar. 

 
4.2.2RECOGNITION OF TOKENS: 

 
Consider the following grammar fragment: 

stmt → if expr  then stmt 

|if expr  then stmt else stmt |ε 
 

expr → term  relop term |term 

term → id |num 
 

where the terminals if , then, else, relop, id and num generate sets of strings given by the 

following regular definitions: 
 

 
 
 
 
 
 
 
 
 

For this language fragment the lexical analyzer will recognize the keywords if, then, else, 

as well as the lexemes denoted by relop, id, and num. To simplify matters, we assume keywords 

are reserved; that is, they cannot be used as identifiers. 

 
Lexeme Token Name Attribute Value 

Any ws _ _ 

if if _ 

then then _ 

else else _ 

Any id id pointer to table entry 

Any number number pointer       to       table 

entry 

< relop LT 

<= relop LE 

= relop ET 

< > relop NE 
 

4.3 TRANSITION DIAGRAM: 
Transition  Diagram  has  a  collection  of  nodes  or  circles,  called  states. 

Each  state represents a condition that could occur during the process of scanning 

the input  looking for a lexeme that matches one  of several patterns .Edges are 
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directed from one state of the transition diagram to another. each edge is labeled by 

a symbol or set of symbols.If we are in one state s, and the next input symbol is a, 

we look for  an edge out of state s labeled by a. if we find such an edge ,we 

advance the forward pointer and enter the state of the  transition diagram to which 

that edge leads. 

Some important conventions about transition diagrams are 

1.  Certain states are said to  be accepting or final .These states indicates that  a 

lexeme  has  been  found,  although  the  actual  lexeme  may  not  consist  of  all 

positions   b/w  the  lexeme  Begin  and  forward pointers  we  always  indicate  an 

accepting state by a double circle. 

2.    In addition, if it  is necessary to  return the forward pointer one position, 

then we shall additionally place a * near that accepting state. 

3. One  state is designed the  state ,or initial state ., it is indicated by an edge 

labeled “start” entering from nowhere .the transition diagram always begins in 

the state before any input symbols have been used. 
 
 
 
 
 
 
 

 

 
 

 
 

As an intermediate step in the construction of a LA, we first produce 

a stylized flowchart, called a transition diagram. Position in a transition diagram, 

are drawn as circles and are called as states. 
 

 



 

 

 
 

 
 
 
 
 
 
 

The above TD for an identifier, defined to be a letter followed by any no of letters or 

digits.A sequence of transition diagram can be converted into program to look for 

the tokens specified by the diagrams. Each state gets a segment of code. 

 
4.4 Automata: 

Automation is defined as a system where information is transmitted and used for performing 

some functions without direct participation of man. 

1.   An   automation   in   which   the   output   depends   only   on   the   input   is called 

automation without memory. 

2.   An automation in which the output depends on the input and state also is called as 
automation with memory. 

3.   An automation in which the output depends only on the state of the machine is 

called a Moore machine. 

4.   An automation in which the output depends on the state and input at any instant of 

time is called a mealy machine. 

 
4.4.1 DESCRIPTION OF AUTOMATA 

 
1.   An automata has a mechanism to read input from input tape, 

2.   Any   language   is   recognized   by   some   automation,   Hence   these   automation   are 

basically language „acceptors‟  or „language recognizers‟ . 
 

 
 

Types of Finite Automata 

Deterministic Automata 

Non-Deterministic Automata. 

 
Deterministic Automata: 

A  deterministic  finite  automata  has  at  most  one  transition  from  each  state  on  any 

input. A DFA is a special case of a NFA in which:- 

 
1.   it has no transitions on input   € , 

2.   Each input symbol has at most one transition from any state. 

 
DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where Q is a finite „set of 

states‟ , which is non empty. 

∑ is „input alphabets‟ , indicates input set. 
qo is an „initial state‟  and qo  is in Q ie, qo, ∑, Q F 

is a set of „Final states‟ , 

δ  is  a  „transmission  function‟   or  mapping  function,  using  this  function  

the next state can be determined. 

The regular expression is converted into minimized DFA by the following procedure: 

 
Regular expression →  NFA →  DFA →  Minimized DFA 



 

 

 
 

 
 

 
 
 
 
 
 
 

The Finite Automata is called DFA if there is only one path for a specific 

input from current state to next state. 
 

a 

a 
So                                                 S2 

 

 
 
 
 

b 
 
 
 

S1 
 

 
 

From state S0 for input „a‟  there is only one path going to S2. similarly 

from so there is only one path for input going to S1. 
 

 
 

Nondeterministic Automata: 

A NFA ia A mathematical model consists of 
 

A set of states S. 

A set of input symbols ∑. 

A transition is a move from one state to another. 

A state so that is distinguished as the start (or initial) state 

A set of states F distinguished as accepting (or final) state. 

A number of transition to a single symbol. 

 
A NFA can be diagrammatically represented by a labeled directed graph, called a transition 

graph, in which the nodes are the states and the labeled edges represent the transition function. 

 
This graph looks like a transition diagram, but the same character can label two or more 

transitions out of one state and edges can be labeled by the special symbol € as well as input 

symbols. 

 
The transition graph for an NFA that recognizes the language (a|b)*abb is shown 

 
 
 

 



 

 

L i n k i n g 
L o a d e r 

 
 
 
 
 
 
 

5. Bootstrapping: 
 

When a computer is first turned on or restarted, a special type of absolute loader, called as 

bootstrap loader is executed.  This bootstrap loads the first program to be run by the computer 

usually an operating system.   The bootstrap itself begins at address O in the memory of the 

machine.  It loads the operating system (or some other program) starting at address 80.  After all 

of the object code from device has been loaded, the bootstrap program jumps to address 80, 

which begins the execution of the program that was loaded. 

 
Such loaders can be used to run stand-alone programs independent of the operating system or the 

system loader. They can also be used to load the operating system or the loader itself into 

memory. 

 
Loaders are of two types: 

 
          Linking loader. 

 

          Linkage editor. 
 

Linkage loaders, perform all linking and relocation at load time. 

 
Linkage editors, perform linking prior to load time and dynamic linking, in which the linking 

function is performed at execution time. 

 
A linkage editor performs linking and some relocation; however, the linkaged program is written 

to a file or library instead of being immediately loaded into memory. This approach reduces the 

overhead when the program is executed. All that is required at load time is a very simple form of 

relocation. 
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6. Pass And Phases Of Translation: 
 

Phases: (Phases are collected into a front end and back end) 
 

Frontend: 
The front end consists of those phases, or parts of phase, that depends primarily on the 

source language and is largely independent of the target machine. These normally include lexical 
and syntactic analysis, the creation of the symbol table, semantic analysis, and the generation of 
intermediate code. 

A certain amount of code optimization can be done by front end as well. the front end 
also includes the error handling tha goes along with each of these phases. 

 

Back end: 
The back end includes those portions of the compiler that depend on the target machine 

and generally, these portions do not depend on the source language . 
 
 

 
7. Lexical Analyzer Generator: 

 

7.1Creating a lexical analyzer with Lex: 

 
 First, a specification of a lexical analyzer is prepared by creating a program lex.l in 

the Lex language. Then, lex.l is run through the Lex compiler to produce a C 

program lex.yy.c. 

 Finally, lex.yy.c is run through the C compiler to produce an object program a.out, 

which is the lexical analyzer that transforms an input stream into a sequence of 

tokens. 
 
 

 



 

 

 
 
 
 
 
 

 

Lex Specification 

 
A Lex program  consists of three parts: 

 
{ definitions } 

%% 

{ rules } 

%% 

{ user subroutines  } 

 
o Definitions  include declarations of variables, constants, and regular definitions 
o Rules  are statements of the form p1  {action1}p2  {action2} … pn  {action} 
o where  pi  is  regular  expression  and  actioni  describes  what  action  the  lexical 

analyzer should take when pattern pi matches a lexeme. Actions are written in C 

code. 

o User subroutines are auxiliary procedures needed by the actions. These 

can be compiled separately and loaded with the lexical analyzer. 
 
 

8. INPUT BUFFERING 
The  LA  scans  the  characters  of  the  source  program  one  at  a  time  to 

discover  tokens.  Because  of  large  amount  of  time  can  be  consumed  scanning 

characters,  specialized  buffering techniques  have  been  developed  to  reduce  the 

amount of overhead required to process an input character. 
 

Buffering techniques: 
 

 

1. Buffer pairs 

2. Sentinels 
 

The lexical analyzer scans the characters of the source program one a t a time to discover tokens. 

Often, however, many characters beyond the next token many have to be examined before the 

next token itself can be determined. For this and other reasons, it is desirable for the lexical 

analyzer to read its input from an input buffer. Figure shows a buffer divided into two halves of, 

say 100 characters each. One pointer marks the beginning of the token being discovered. A look 

ahead pointer scans ahead of the beginning point, until the token is discovered .we view the 

position of each pointer as being between the character last read and the character next to be 

read. In practice each buffering scheme adopts one convention either a pointer is at the symbol 

last read or the symbol it is ready to read. 
 

Token beginnings look ahead pointer, The distance which the look ahead pointer may 

have to travel past the actual token may be large. 

For example, in a PL/I program we may see: DECALRE (ARG1, ARG2… ARG n) 

without knowing whether DECLARE is a keyword or an array name until we see the character 

that follows the right parenthesis. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


 

 

 
 
 
 
 
 

 

PART-B TOPDOWN 

PARSING 

1. Context-free Grammars: Definition: 
 

 

Formally, a context-free grammar G is a 4-tuple G = (V, T, P, S), where: 

1.   V is a finite set of variables (or nonterminals).  These describe sets of “related” strings. 

2.   T is a finite set of terminals (i.e., tokens). 

3.   P is a finite set of productions, each of the form 

A    

where A  V is a variable, and   (V  T)* is a sequence of terminals and nonterminals. 

S  V is the start symbol. 

Example of CFG: 

E ==>EAE | (E) | -E | id 

A==>  + | - | * | / | 

Where E, A are the non-terminals while id, +, *, -, /,(, ) are the terminals. 
 

 

2. Syntax analysis: 

 
In syntax analysis phase the source program is analyzed to check whether if conforms to the 

source language‟ s syntax, and to determine its phase structure. This phase is often separated 

into two phases: 

 
          Lexical analysis: which produces a stream of tokens? 

 Parser: which determines the phrase structure of the program based on the context- 

free grammar for the language? 
 

 
 

2.1 PARSING: 

 
Parsing is the activity of checking whether a string of symbols is in the language of some 

grammar, where this string is usually the stream of tokens produced by the lexical analyzer. If 

the string is in the grammar, we want a parse tree, and if it is not, we hope for some kind of error 

message explaining why not. 

 
There are two main kinds of parsers in use, named for the way they build the parse trees: 

 Top-down: A top-down parser attempts to construct a tree from the root, applying 

productions forward to expand non-terminals into strings of symbols. 

 Bottom-up:  A  Bottom-up  parser  builds  the  tree  starting  with  the  leaves,  using 

productions in reverse to identify strings of symbols that can be grouped together. 



 

 

 
 
 
 
 
 
 

In both cases the construction of derivation is directed by scanning the input sequence from left 

to right, one symbol at a time. 

 
Parse Tree: 

 

 
 

L e x ic a l 

A n a ly z e r 
P a r s e r                        

Re s t  of 
f ro nt  e n d 

 
 
 
 

Sy mb o l 
T a b l e 

 
 

A parse tree is  the graphical  representation  of  the structure of a sentence according to  its 

grammar. 

 
Example: 
Let the production P is: 

 
E T | E+T 

T F | T*F 

F V | (E) 

V a | b | c |d 

 
The parse tree may be viewed as a representation for a derivation that filters out the choice 

regarding the order of replacement. 
 

 
 

Parse tree for a * b + c 
 

E 
 

 
E               +          T 

 
T  +      F                     F 

F   V                    V 

V    b                    c 

a 



 

 

 
 
 
 
 
 
 

Parse tree for a + b * c is: 
 

E 
 

 
E              +         T 

 
T                 T       *       F 

F                 F                V 

V                 V                c 

a                  b 
 

 

Parse tree for (a * b) * (c + d) 
 

E 

 
T 

 
 

T             *            F 
 

 
F                                             (E) 

 

 

(E) E     +      T 

 

E      +      T                              
T               F 

 
F               V 

T               F 

 
V               d 

F              V 

 
c 

V               b 
 

 
a 

 
 

2.2 SYNTAX TREES: 
 

Parse tree can be presented in a simplified form with only the relevant structure information by: 

 
 Leaving out chains of derivations (whose sole purpose is to give operators difference 

precedence). 



 

 

 
 
 
 
 
 

 

          Labeling the nodes with the operators in question rather than a non-terminal. 

The simplified Parse tree is sometimes called as structural tree or syntax tree. 

 

 
a * b + c                            a + b * c                       (a + b) * (c + d) 

 
E                                                    E                                                  E 

+                                                 * 

+ 
a            

*                                   
(E)        (E) 

*           c 

a           b                                                      
b          c                             

+           + 
 

a         b  c         d 
 

Sy nt a x T r e e s 
 

 
 
 

Syntax Error Handling: 
 

If a compiler had to process only correct programs, its design & implementation would be 

greatly simplified.  But programmers frequently write incorrect programs, and a good compiler 

should assist the programmer in identifying and locating errors.The programs contain errors at 

many different levels. 

For example, errors can be: 

 
1)        Lexical – such as misspelling an identifier, keyword or operator 

2)        Syntactic – such as an arithmetic expression with un-balanced parentheses. 

3)        Semantic – such as an operator applied to an incompatible operand. 

4)        Logical – such as an infinitely recursive call. 

 
Much of error detection and recovery in a compiler is centered around the syntax analysis phase. 

The goals of error handler in a parser are: 

    It should report the presence of errors clearly and accurately. 

    It should recover from each error quickly enough to be able to detect subsequent errors. 

    It should not significantly slow down the processing of correct programs. 

 
2.3Ambiguity: 

 
Several derivations will generate the same sentence, perhaps by applying the same productions in 

a different order. This alone is fine, but a problem arises if the same sentence has two distinct 

parse trees. A grammar is ambiguous if there is any sentence with more than one parse tree. 

Any parses for an ambiguous grammar has to choose somehow which tree to return. 

There are a number of solutions to this; the parser could pick one arbitrarily, or we can provide 



 

 

 
 
 
 
 
 
 

some hints about which to choose.  Best of all  is to rewrite the grammar so that it is not 

ambiguous. 

There is no general method for removing ambiguity. Ambiguity is acceptable in spoken 

languages. Ambiguous programming languages are useless unless the ambiguity can be resolved. 

 
Fixing some simple ambiguities in a grammar: 
 

 
 

(i) 

Ambiguous 

 
A  B | AA 

language 

 
Lists of one or more B‟ s 

unambiguous 

 
A  BC 

  C  A | E  

(ii) A  B | A;A Lists of one or more B‟ s with punctuation A  BC 

  C  ;A | E  

(iii) A  B | AA | E lists of zero or more B‟ s A  BA | E 

 

Any sentence with more than two variables, such as (arg, arg, arg) will have multiple parse trees. 
 

 
 

2.4 Left Recursion: 
 



If there is any non terminal A, such that there is a derivation A  

the grammar is left recursive. 

 
Algorithm for eliminating left Recursion: 

1. Group all the A productions together like this: 

A  A 1 | A 2 | - - - | A m | 1 | 2 | - - - | n 

 

A   for some string, then 

 

Where, 
 

 

A is the left recursive non-terminal, 

 is any string of terminals and 

 is any string of terminals and non terminals that does not begin with A. 
 

2. Replace the above A productions by the following: 

A  1 A
I 
| 2 A

I 
| - - - | n A

I
 

A
I 
 1 A

I 
| 2 A

I 
| - - - |m A

I 
| 



Where, A
I  

is a new non terminal. 

 
Top down parsers cannot handle left recursive grammars. 



 

 

 
 
 
 
 
 
 

If our expression grammar is left recursive: 

 
    This can lead to non termination in a top-down parser. 

    for a top-down parser, any recursion must be right recursion. 

    we would like to convert the left recursion to right recursion. 

 
Example 1: 

Remove the left recursion from the production: A  A  | 








Applying the transformation yields: 

A   A
I
 

A
I 
  A

I  
| 


Remaining part after A. 

Left Recursive. 

Eliminate 

 

Example 2: 
Remove the left recursion from the productions: 

E  E + T | T 

T  T * F | F 

Applying the transformation yields: 

E  T E
I                                                 

T  F T
I
 

E
I 
 T E

I 
|                           T

I 
 * F T

I 
| 

Example 3: 
Remove the left recursion from the productions: 

E  E + T | E – T | T 

T  T * F | T/F | F 

Applying the transformation yields: 
 

E  T E
I                                                                   

T  F T
I
 

E  + T E
I 
| - T E

I 
|             T

I 
 * F T

I 
| /F T

I 
| 

Example 4: 

Remove the left recursion from the productions: 

S  A a | b 

A  A c | S d | 

1.         The non terminal S is left recursive because S  A a  S d a 

But it is not immediate left recursive. 

2.         Substitute S-productions in A  S d to obtain: 

A  A c | A a d | b d | 

3.         Eliminating the immediate left recursion: 



 

 

 
 
 
 
 
 

 
 

 
 
 
 

Example 5: 

S  A a | b 

A  b d A
I 
| A

I
 

A
I 
 c A

I 
| a d A

I 
| 

Consider the following grammar and eliminate left recursion. 

S  A a | b 

A  S c | d 

The nonterminal S is left recursive in two steps: 

S  A a  S c a  A a c a  S c a c a - - - 

Left recursion causes the parser to loop like this, so remove: 

Replace A  S c | d   by  A  A a c | b c | d 

and then by using Transformation rules: 

A  b c A
I 
| d A

I
 

A
I 
 a c A

I 
| 


2.5 Left Factoring: 
Left factoring is a grammar transformation that is useful for producing a grammar suitable for 
predictive parsing. 

When it is not clear which of two alternative productions to use to expand a non-terminal A, we 

may be able to rewrite the productions to defer the decision until we have some enough of the 

input to make the right choice. 

 
Algorithm: 

For all A  non-terminal, find the longest prefix  that occurs in two or more right-hand sides of 

A. 

If    then replace all of the A productions, 

A   I |  2 | - - -  |  n | r 

With  

A   A
I 
| r 

A
I 
 I | 2| - - - | n | 

Where, A
I 
is a new element of non-terminal. 

Repeat until no common prefixes remain. 

It is easy to remove common prefixes by left factoring, creating new non-terminal. 

For example consider: 

V    |  r 

Change to: 

V   V
I
 

V
I 
  | r 

 
Example 1: 
Eliminate Left factoring in the grammar: 

S  V := int 

V  alpha „[„ int ‟ ]‟  | alpha 



 

 

 
 
 
 
 
 
 

Becomes: 

S  V := int 

V   alpha V
I
 

V
I 
 ‟ [„ int ‟ ] | 



2.6 TOP DOWN PARSING: 
 

Top down parsing is the construction of a Parse tree by starting at start symbol and “guessing” 

each derivation until we reach a string that matches input. That is, construct tree from root to 

leaves. 

The advantage of top down parsing in that a parser can directly be written as a program. Table- 

driven top-down parsers are of minor practical relevance. Since bottom-up parsers are more 

powerful than top-down parsers, bottom-up parsing is practically relevant. 

For example, let us consider the grammar to see how top-down parser works: 

 
S  if E then S else S | while E do S | print 

E  true | False | id 

 
The input token string is: If id then while true do print else print. 

1.         Tree: 

S 

 
Input:   if id then while true do print else print. 

Action: Guess for S. 

2.         Tree: 
 

 
S 

 

 
 

if            E        t h e n        S        e l s e         S 

 

Input:  if id then while true do print else print. 

Action: if matches; guess for E. 

3.         Tree: 
 

 
S 

 

 
 

if            E        t h e n        S        e l s e         S 

 
 

id  
 

Input:  id then while true do print else print. 

Action: id matches; then matches; guess for S. 



 

 

 
if            E         t h e n         S         e l s e         S 

 

 
id        w h i l e    E      do      S 

 
 

Input:  while true do print else print. 

Action: while matches; guess for E. 

5.         Tree: 
 

 

S 
 

 
 

if            E        t h e n        S        e l s e         S 

 
 

id        w h i l e   E      do      S 
 

 
t ru e 

 
 

Input:  true do print else print 

Action:true matches; do matches; guess S. 
 
 
 
 

6.         Tree: 
 

 
S 

 

 
 

if            E        t h e n        S        e l s e         S 
 
 

id        w h i l e   E      do      S 
 

 
 
 

Input:  print else print. 

t ru e          pr i nt 

Action: print matches; else matches; guess for S. 



 

 

 
 
 
 
 

 

7.         Tree: 
 

 
S 

 

 
 

if            E        t h e n        S        e l s e         S 
 

 

id        w h i l e   E      do      S pr i nt 

 

 
 
 

Input: print. 

Action: print matches; input exhausted; done. 

 
2.6.1. Recursive Descent Parsing: 

t ru e          pr i nt 

 

Top-down parsing can be viewed as an attempt to find a left most derivation for an input 

string. Equivalently, it can be viewd as a attempt to construct a parse tree for the input starting 

from the root and creating the nodes of the parse tree in preorder. 

The special case of recursive –decent parsing, called predictive parsing, where no 

backtracking is required. The general form of top-down parsing, called recursive descent, that 

may involve backtracking, that is, making repeated scans of the input. 

Recursive descent or predictive parsing works only on grammars where the first terminal 

symbol of each sub expression provides enough information to choose which production to use. 

Recursive descent parser is a top down parser involving backtracking. It makes a repeated 

scans of the input. Backtracking parsers are not seen frequently, as backtracking is very needed 

to parse programming language constructs. 

 
Example: consider the grammar 

S→cAd 

A→ab|a 

And the input string w=cad. To construct a parse tree for this string top-down, we initially create 

a tree consisting of a single node labeled scan input pointer points to c, the first symbol of w. we 

then use the first production for S to expand tree and obtain the tree of Fig(a). 
 

S                                              S                                                                S 

 
c A            d                   c          A          d                                      c          A           d 

a b                                                         a 

Fig(a)                                        Fig(b)                                                        Fig(c) 



 

 

 
 
 
 
 

 

The left most leaf, labeled c, matches the first symbol of w, so we now advance the input pointer 

to a ,the second symbol of w, and consider the next leaf, labeled A. We can then expand A using 

the first alternative for A to obtain the tree in Fig (b). we now have a match for the second input 

symbol so we advance the input pointer to d, the third, input symbol, and compare d against the 

next leaf, labeled b. since b does not match the d ,we  report failure and go back to A  to see 

where there is any alternative for Ac that we have not tried but that might produce a match. 

 
In going back to A, we must reset the input pointer to position2,we now try second 

alternative for A to obtain the tree of Fig(c).The leaf matches second symbol of w and the leaf d 

matches the third symbol . 

The left recursive grammar can cause a recursive- descent parser, even one with 

backtracking, to go into an infinite loop.That is ,when we try to expand A, we may eventually 

find ourselves again trying to ecpand A without Having consumed any input. 

 
2.6.2. Predictive Parsing: 
Predictive  parsing  is  top-down  parsing  without  backtracking  or  look  a  head.  For  many 
languages, make perfect guesses (avoid backtracking) by using 1-symbol look-a-head. i.e., if: 

A  I |  2 | - - - | n. 

Choose correct i by looking at first symbol it derive. If  is an alternative, choose it last. 

This approach is also called as predictive parsing. There must be at most one production in order 
to avoid backtracking. If there is no such production then no parse tree exists and an error is 

returned. 

The crucial property is that, the grammar must not be left-recursive. 

Predictive parsing works well on those fragments of programming languages in which keywords 

occurs frequently. 

For example: 

stmt  if exp then stmt else stmt 

| while expr do stmt 

| begin stmt-list end. 

then the keywords if, while and begin tell, which alternative is the only one that could possibly 

succeed if we are to find a statement. 

The model of predictive parser is as follows: 



 

 

 

 
 
 
 
 
 

 
A predictive parser has: 

 
          Stack 

          Input 

          Parsing Table 

          Output 

 
The input buffer consists the string to be parsed, followed by $, a symbol used as a right end 

marker to indicate the end of the input string. 

The stack consists of a sequence of grammar symbols with $ on the bottom, indicating the 

bottom of the stack. Initially the stack consists of the start symbol of the grammar on the top of 

$. 

Recursive descent and LL parsers are often called predictive parsers, because they operate by 

predicting the next step in a derivation. 

 
The algorithm for the Predictive Parser Program is as follows: 

Input: A string w and a parsing table M for grammar G 

Output: if w is in L(g),a leftmost derivation of w; otherwise, an error indication. 

Method: Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in 

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for 

the input is: 

Set ip to point to the first symbol of w$; 

repeat 

let x be the top stack symbol and a the symbol pointed to by ip; 

if X is a terminal or $ then 

if X = a then 

pop X from the stack and advance ip 

else error() 

else                                          /* X is a non-terminal */ 

if M[X, a] = X  Y1 Y2 . . . . . . . Yk then begin 



 

 

 
 
 
 
 

 
 
 
 
 
 

end 

pop X from the stack; 

push Yk, Yk-1, . . . . . . . . . . .Y1 onto the stack, with Y1 on top; 

output the production X  Y1 Y2 . . . . . Yk 

else error() 

until X = $ /*stack is empty*/ 
 
 

 
2.6.3 FIRST and FOLLOW: 

The construction of a predictive parser is aided by two functions with a grammar G. these 

functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for G, 

whenever possible. Sets of tokens  yielded by the  FOLLOW function can also be used as 

synchronizing tokens during pannic-mode error recovery. 

If α is any string of grammar symbols, let FIRST (α) be the set of terminals that begin the 

strings derived from α. If α=>€,then € is also in FIRST(α). 

 
Define FOLLOW (A), for nonterminals A, to be the set of terminals a that can appear 

immediately to the right of A in some sentential form, that is, the set of terminals a such that 

there exist  a derivation of the form S=>αAaβ for some α and β. If A can be the rightmost symbol 

in some sentential form, then $ is in FOLLOW(A). 

 
Computation of FIRST (): 

To compute FIRST(X) for all grammar symbols X, apply the following rules until no 
more terminals or € can be added to any FIRST set. 

    If X is terminal, then FIRST(X) is {X}. 

    If X→€ is production, then add € to FIRST(X). 

 If X is nonterminal and X→Y1  Y2……Yk  is a production, then place a in 

FIRST(X) if for  some i,a is in FIRST(Yi),and € is in all of FIRST(Yi),and € 

is in all of FIRST(Y1),….. FIRST(Yi-1);that is Y1………. Yi-1==>€.if € is in 

FIRST(Yj), for all j=,2,3…….k, then add € to FIRST(X).for example, 

everything in FIRST(Y1) is surely in FIRST(X).if Y1  does not derive €,then 

we add nothing more to FIRST(X),but if Y1=>€,then we add FIRST(Y2) and 

so on. 

 
FIRST (A) = FIRST (I) U FIRST (2) U - - - U FIRST (n) 

Where, A  1 | 2 | - - - |n, are all the productions for A. 

FIRST (A) = if   FIRST (A) then FIRST (A) 

else (FIRST (A) - {}) U FIRST () 



 

 

 
 
 
 
 

 

Computation of FOLLOW (): 
 

To compute FOLLOW (A) for all nonterminals A, apply the following rules until nothing can 

be added to any FOLLOW set. 

    Place $ in FOLLOW(s), where S is the start symbol and $ is input right end marker . 

    If there is a production A→αBβ,then everything in FIRST(β) except for € is placed in 

FOLLOW(B). 

 If there is production A→αB, or a production A→αBβ where FIRST (β) contains € 

(i.e.,β→€),then everything in FOLLOW(A)is in FOLLOW(B). 

 
Example: 

Construct the FIRST and FOLLOW for the grammar: 
 

 

A  BC | EFGH | H 

B  b 

C  c | 

E  e | 

F  CE 

G  g 

H  h | 


Solution: 

1.         Finding first () set: 

1.         first (H) = first (h)  first () = {h, } 
 

2.         first (G) = first (g) = {g} 
 

3.         first (C) = first (c)  first () = c, } 
 

4.         first (E) = first (e)  first () = {e, } 
 

5.         first (F) = first (CE) = (first (c) - {})  first (E) 
 

= (c, } {})  {e, } = {c, e, } 
 

6.         first (B) = first (b)={b} 
 

7.         first (A) = first (BC)  first (EFGH)  first (H) 
 

= first (B)  (first (E) – {})  first (FGH)  {h, } 
 

= {b, h, }  {e}  (first (F) – {})   first (GH) 
 

= {b, e, h, }  {C, e}  first (G) 
 

= {b, c, e, h, }  {g} = {b, c, e, g, h, } 



 

 

 
 
 
 
 

 

2.         Finding follow() sets: 
 

 

1.         follow(A) = {$} 
 

2.         follow(B) = first(C) – {}  follow(A) = {C, $} 
 

3.         follow(G) = first(H) – {}  follow(A) 
 

={h, } – {}  {$} = {h, $} 
 

4.         follow(H) = follow(A) = {$} 
 

5.         follow(F) = first(GH) – {} = {g} 
 

6.         follow(E) = first(FGH) m- {}  follow(F) 
 

= ((first(F) – {})  first(GH)) – {}  follow(F) 
 

= {c, e}  {g}  {g} = {c, e, g} 
 

7.         follow(C) = follow(A)  first (E) – {}  follow (F) 
 

={$}  {e, }  {g} = {e, g, $} 
 

 
 
 

Example 1: 

 
Construct a predictive parsing table for the given grammar or Check whether the given grammar 

is LL(1) or not. 

E  E + T | T 
T  T * F | F 

F  (E) | id 

 
Step 1: 

Suppose if the given grammar is left Recursive then convert the given grammar (and ) into 

non-left Recursive grammar (as it goes to infinite loop). 
E  T EI

 

E
I 
 + T E

I 
| 

T
I 
 F T

I
 

T
I 
 * F T

I 
| 

F  (E) | id 

 
Step 2: 
Find the FIRST(X) and FOLLOW(X) for all the variables. 

 

The variables are: {E, E
I
, T, T

I
, F} 

Terminals are: {+, *, (, ), id} and $ 
Computation of FIRST() sets: 



 

 

 
 
 
 
 

 
FIRST (F) = FIRST ((E)) U FIRST (id) = {(, id} 

FIRST (T
I
) = FIRST (*FT

I
) U FIRST () = {*, } 

FIRST (T) = FIRST (FT
I
) = FIRST (F) = {(, id} 

FIRST (E
I
) = FIRST (+TE

I
) U FIRST () = {+, } 

FIRST (E) = FIRST (TE
I
) = FIRST (T) = {(, id} 

Computation of FOLLOW () sets: 

 
 
 
 
 
 

 
Relevant production 

 

FOLLOW (E) = {$} U FIRST ( ) ) = {$, )}                                                               F  (E) 

FOLLOW (E
I
) = FOLLOW (E) = {$, )}                                                                   E  TE

I
 

FOLLOW (T) = (FIRST (E
I
) - {}) U FOLLOW (E) U FOLLOW (E

I
)                  E  TE

I
 

= {+, ), $}                                                                                           E
I 
 +TE

I
 

 

FOLLOW (T
I
) = FOLLOW (T) = {+, ), $}                                                               T  FT

I
 

 

FOLLOW (F) = (FIRST (T
I
) - {}) U FOLLOW (T) U FOLLOW (T

I
)                  T  T

I
 

= {*, +, ), $} 

 
Step 3: 

Construction of parsing table: 

 
Terminals 

 
Variables 

 
+ 

 
* 

 
( 

 
) 

 
id 

 
$ 

E   E  TE
I
  E  TE

I
  

 

E
I 

I E 
+TE

I
 

  
 

I 
E   

 
 

E 
I 
  

T   T  FT
I
  T  FT

I
  

T
I 

T
I 
  T

I 
 *FT  T

I 
   T

I 
  

F   F  (E)  F  id  

Table 3.1.  Parsing Table 
 

Fill the table with the production on the basis of the FIRST(). If the input symbol is an  in FIRST(), then 

goto FOLLOW() and fill   , in all those input symbols. 
 

3.1.        Let us start with the non-terminal E, FIRST(E) = {(, id}. 

So, place the production E  TE
I 
at ( and id. 

 

3.2.        For the non-terminal EI, FIRST (EI) = {+, }. 

So, place the production E
I 
 +TE

I  
at + and also as there is a  in FIRST(E

I
), see 

FOLLOW(E
I
) = {$, )}. So write the production E

I 
  at the place $ and ). 



 

 

 
 
 
 
 

 

Similarly: 
 

3.3.        For the non-terminal T, FIRST(T) = {(, id}. 

So place the production T  FT
I 
at ( and id. 

 

3.4.        For the non-terminal TI, FIRST (TI) = {*, } 

So place the production T
I 
 *FT

I 
at * and also as there is a  in FIRST (T

I
), see 

FOLLOW (T
I
) = {+, $, )}, so write the production T

I 
  at +, $ and ). 

 
3.5.        For the non-terminal F, FIRST (F) = {(, id}. 

So place the production F  id at id location and F  (E) at ( as it has two productions. 
 

3.6.      Finally, make all undefined entries as error. 

As these were no multiple entries in the table, hence the given grammar is LL(1). 
 

 
 

Step 4: 
Moves made by predictive parser on the input id + id * id is: 

 

STACK INPUT REMARKS 

 
$ E 

 
id + id * id $ 

E and id are not identical; so see E on id in parse table, the 

production is ETE
I
; pop E, push E

I 
and T i.e., move in 

reverse order. 
 

$ E
I 
T 

 

id + id * id $ 
See T on id the production is T  F T

I 
; 

Pop T, push T
I 
and F; Proceed until both are identical. 

$ E
I 
T

I 
F id + id * id $ F  id 

$ E
I 
T

I 
id id + id * id $ Identical; pop id and remove id from input symbol. 

$ E
I 
T

I
 + id * id $ See T

I 
on +; T

I 
  so, pop T

I
 

$ E
I
 + id * id $ See E

I  
on +; E

I 
 +T E

I
; push E

I 
, + and T 

$ E
I 
T + + id * id $ Identical; pop + and remove + from input symbol. 

$ E
I 
T id * id $  

$ E
I 
T

I 
F id * id $ T  F T

I
 

$ E
I 
T

I 
id id * id $ F  id 

$ E
I 
T

I
 * id $  

$ E
I 
T

I 
F * * id $ T

I 
 * F T

I
 

$ E
I 
T

I 
F id $  

$ E
I 
T

I 
id id $ F  id 



 

 

 

 
 
 
 
 
 

$ E
I 
T

I
 $ T

I 
  

$ E
I
 $ E

I 
  

$ $ Accept. 

Table 3.2 Moves made by the parser on input id + id * id 

 
Predictive parser accepts the given input string. We can notice that $ in input and stuck, i.e., both 

are empty, hence accepted. 

 
2.6.3 LL (1) Grammar: 

 
The first L stands for “Left-to-right scan of input”. The second L stands for “Left-most derivation”. The „1‟  

stands for “1 token of look ahead”. 

No LL (1) grammar can be ambiguous or left recursive. 

 
If there were no multiple entries in the Recursive decent parser table, the given grammar is 

LL (1). 

 
If the grammar G is ambiguous, left recursive then the recursive decent table will have atleast 

one multiply defined entry. 

 
The weakness of LL(1) (Top-down, predictive) parsing is that, must predict which production to 

use. 

 
Error Recovery in Predictive Parser: 

Error recovery is based on the idea of skipping symbols on the input until a token in a 
selected set of synchronizing tokens appear. Its effectiveness depends on the choice of 

synchronizing set. The Usage of FOLLOW and FIRST symbols as synchronizing tokens works 

reasonably well when expressions are parsed. 

 
For the constructed table., fill with synch for rest of the input symbols of FOLLOW set and then 

fill the rest of the columns with error term. 

 
Terminals 

 
Variables 

 
+ 

 
* 

 
( 

 
) 

 
id 

 
$ 

E error error E  TE
I
 synch E  TE

I
 synch 

 

E
I 

I E 
+TE

I
 

 

error 
 

error 
 

I 
E   

 

error 
 

E 
I 
  

T synch error T  FT
I
 synch T  FT

I
 synch 

T
I T

I 
  T

I 
 *FT error T

I 
  error T

I 
  

F synch synch F  (E) synch F  id synch 

Table3.3 :Synchronizing tokens added to parsing table for table 3.1. 



 

 

 
 
 
 
 

 
If the parser looks up entry in the table as synch, then the non terminal on top of the stack is 

popped in an attempt to resume parsing. If the token on top of the stack does not match the input 

symbol, then pop the token from the stack. 

 
The moves of a parser and error recovery on the erroneous input) id*+id is as follows: 

 

 
 

STACK INPUT REMARKS 

$ E ) id * + id $ Error, skip ) 

$ E id * + id $  

$ E
I 
T id * + id $  

$ E
I 
T

I 
F id * + id $  

$ E
I 
T

I 
id id * + id $  

$ E
I 
T

I * + id $  

$ E
I 
T

I 
F * * + id $  

$ E
I 
T

I 
F + id $ Error; F on + is synch; F has been popped. 

$ E
I 
T

I + id $  

$ E
I + id $  

$ E
I 
T + + id $  

$ E
I 
T id $  

$ E
I 
T

I 
F id $  

$ E
I 
T

I 
id id $  

$ E
I 
T

I $  

$ E
I $  

$ $ Accept. 

 
Example 2: 

 

Table 3.4.  Parsing and error recovery moves made by predictive parser 

 
Construct a predictive parsing table for the given grammar or Check whether the given grammar 

is LL(1) or not. 
 

S  iEtSS
I 
| a 

S
I 
 eS | 

E  b 



 

 

 
 
 
 
 

 

Solution: 

1.         Computation of First () set: 
 

 

1.         First (E) = first (b) = {b} 
 

2.         First (S
I
) = first (eS)  first () = {e, } 

 

3.         first (S) = first (iEtSS
I
)  first (a) = {i, a} 

 

 
2.         Computation of follow() set: 

1.         follow (S) = {$}  first (S
I
) – {}  follow (S)  follow (S

I
) 

 

= {$}  {e} = {e, $} 
 

2.         follow (S
I
) = follow (S) = {e, $} 

 

3.         follow (E) = first (tSS
I
) = {t} 

 

 

3.         The parsing table for this grammar is: 
 

 

 a b e i t $ 

S 
 

S
I 

 

 

E 

S  a  

 
 
 
 
 

E  b 

 

 
 

S
I 
 

S
I 
 eS 

S      

iEtSS
I
 

  

 
 

S
I 
  

 

As the table multiply defined entry. The given grammar is not LL(1). 
 

 
 

Example 3: 

 
Construct the FIRST and FOLLOW and predictive parse table for the grammar: 

 

S  AC$ 

C  c | 

A  aBCd | BQ | 

B  bB | d 

Q  q 

Solution: 

1. Finding the first () sets: 

First (Q) = {q} 

First (B) = {b, d} 



 

 

 
 
 
 
 

 
First (C) = {c, } 

 

First (A) = First (aBCd)  First (BQ)  First () 
 

= {a}  First (B)  First (d) {} 
 

= {a}  First (bB)  First (d)  {} 
 

= {a}  {b}  {d}  {} 
 

= {a, b, d, } 

First (S) = First (AC$) 

= (First (A) – {})  (First (C) – {})  First () 
 

= ({a, b, d, } – {})  ({c, } – {})  {} 
 

= {a, b, d, c, } 
 

 
2. Finding Follow () sets: 

Follow (S) = {#} 

Follow (A) = (First (C) – {})  First ($) = ({c, } – {})  {$} 

Follow (A) = {c, $} 

Follow (B) = (First (C) – {})  First (d)  First (Q) 
 

= {c}  {d}  {q} = {c, d, q} 

Follow (C) = (First ($)  First (d) = {d, $} 

Follow (Q) = (First (A) = {c, $} 

 

 

3.         The parsing table for this grammar is: 
 

 

 a b c D q $ # 

S SAC$ SAC 

$ 

SAC 

$ 

SAC 

$ 

 SAC 

$ 

 

A AaBCd ABQ A ABQ  A  

B  BbB  Bd    

C   Cc C  C  

Q     Qq   



 

 

 

 
 
 
 
 
 
 

4.         Moves made by predictive parser on the input abdcdc$ is: 
 

 

Stack symbol Input Remarks 

#S abdcdc$# S  AC$ 

#$CA abdcdc$# A  aBCd 

#$CdCBa abdcdc$# Pop a 

#$CdCB bdcdc$# B  bB 

#$CdCBb bdcdc$# Pop b 

#$CdCB dcdc$# B  d 

#$CdCd dcdc$# Pop d 

#$CdC cdc$# C  c 

#$Cdc cdc$# Pop C 

#$Cd dc$# Pop d 

#$C c$# C  c 

#$c c$# Pop c 

#$ $# Pop $ 

# # Accepted 



 

 

 
 
 
 
 

 

 UNIT 2 

Bottom up parsing 
 

 
1. BOTTOM UP PARSING: 

 

Bottom-up parser builds a derivation by working from the input sentence back towards 

the start symbol S.  Right most derivation in reverse order is done in bottom-up parsing. 
 

(The point of parsing is to construct a derivation.  A derivation consists of a series of rewrite 

steps) 
 

Sr0r1r2- - - rn-1rnsentence 
 

Bottom-up 
 

Assuming the production A, to reduce ri ri-1 match some RHS  against ri then replace  with 

its corresponding LHS, A. 
 

In terms of the parse tree, this is working from leaves to root. 
 

Example – 1: 
 

Sif E then S else S/while E do S/ print 
 

E true/ False/id 
 

Input: if id then while true do print else print. 
 

Parse tree: 
 

Basic idea:      Given  input  string  a,  “reduce”  it  to  the  goal  (start)  symbol,  by  looking  for 
 

substring that match production RHS. 

S 
 
 
 
 

 
if                  E                then            S                      Clse                S 

 

I                                                                     I 

id               While       E      do       S 
S 

I               I 
 

true 



 

 

 
 
 
 
 

 
        if E then S else S 
lm 

        if id then S else S 

lm 

        if id then while E do S else S 

lm 

        if id then while true do S else S 
lm 

        if id then while true do print else S 

lm 

        if id then while true do print else print 
lm 

        if E then while true do print else print 
rm 

        if E then while E do print else print 

rm 

        if E then while E do S else print 
rm 

 

        if E then S else print 
rm 

 

        if E then S else S 
rm 

 

        S 
rm 

 

 

1.1 Topdown Vs Bottom-up parsing: 
 

Top-down Bottom-up 

1. Construct tree from root to leaves 
 

2.  “Guers”  which  RHS  to  substitute  for 
 

nonterminal 
 

3. Produces left-most derivation 
 

4. Recursive descent, LL parsers 
 

5. Recursive descent, LL parsers 
 

6. Easy for humans 

1. Construct tree from leaves to root 
 

2.    “Guers”    which    rule    to    “reduce” 
 

terminals 
 

3. Produces reverse right-most derivation. 
 

4. Shift-reduce, LR, LALR, etc. 
 

5. “Harder” for humans. 



 

 

 
 
 
 
 

 
        Bottom-up can parse a larger set of languages than topdown. 

 
        Both work for most (but not all) features of most computer languages. 

 

Example – 2: 
 

Right-most derivation 
 

SaAcBe                                           llp: abbcde/                 SaAcBe 

AAb/b                                                                                  aAcde 

Bd                                                                                       aAbcde 

 abbcde 
 

Bottom-up approach 
 

“Right sentential form” Reduction 

abbcde  

aAbcde Ab 

Aacde AAb 

AacBe Bd 

S SaAcBe 

 

 
 

Steps correspond to a right-most derivation in reverse. 
 

(must choose RHS wisely) 
 

Example – 3: 

SaABe 

AAbc/b 

Bd 

1/p: abbcde 
 

Right most derivation: 
 

S  aABe  

  aAde Since ( ) Bd 

  aAbcde Since ( ) AAbc 

  abbcde Since ( ) Ab 



 

 

 
 
 
 
 

 

Parsing using Bottom-up approach: 
 

Input Production used 

abbcde  

aAbcde Ab 

AAde AAbc 

AABe Bd 

 

S parsing is completed as we got a start symbol 
 

Hence the 1/p string is acceptable. 
 

Example – 4 
 

EE+E 

EE*E 

E(E) 

Eid 

1/p:     id1+id2+id3 
 

 

Right most derivation 
 

E   E+E 
 

E+E*E 
 

E+E*id3 
 

E+id2*id3 
 

id1+id2*id3 
 

Parsing using Bottom-up approach: 

Go from left to right 

id1+id2*id3 

E+id2*id3                           Eid 

E+E*id3                                    Eid 

E*id3                                          EE+E 

E*E                             Eid 

E 

= start symbol, Hence acceptable. 



 

 

 
 
 
 
 

 

2. HANDLES: 
 

Always making progress by replacing a substring with LHS of a matching production will not 

lead to the goal/start symbol. 
 

For example: 
 

abbcde 
 

aAbcde Ab 

aAAcde  Ab 

struck 

Informally, A Handle of a string is a substring that matches the right side of a production, and 

whose reduction to the non-terminal on the left side of the production represents one step along 

the reverse of a right most derivation. 
 

If the grammar is unambiguous, every right sentential form has exactly one handle. 
 

More formally, A handle is a production A and a position in the current right-sentential form 

 such that: 

SA/

For example grammar, if current right-sentential form is 

a/Abcde 

Then the handle is AAb at the marked position.  „a‟  never contains non-terminals. 
 

2.1HANDLE PRUNING: 
 

Keep removing handles, replacing them with corresponding LHS of production, until we reach S. 

Example: 

EE+E/E*E/(E)/id 
 

Right-sentential form Handle Reducing production 

a+b*c a Eid 

E+b*c b Eid 



 

 

 

 
 
 
 
 
 

E+E*C C Eid 

E+E*E E*E EE*E 

E+E E+E EE+E 

E   

The grammar is ambiguous, so there are actually two handles at next-to-last step. 
 

We can use parser-generators that compute the handles for us. 

 
3. SHIFT- REDUCE PARSING: 

 

Shift Reduce Parsing uses a stuck to hold grammar symbols and input buffer to hold string to be 

parsed, because handles always appear at the top of the stack i.e., there‟ s no need to look 

deeper into the state. 

A shift-reduce parser has just four actions: 
 

1.         Shift-next word is shifted onto the stack (input symbols) until a handle is formed. 
 

2.         Reduce – right end of handle is at top of stack, locate left end of handle within the stack. 
 

Pop handle off stack and push appropriate LHS. 
 

3.         Accept – stop parsing on successful completion of parse and report success. 
 

4.         Error – call an error reporting/recovery routine. 
 

3.1 Possible Conflicts: 
 

Ambiguous grammars lead to parsing conflicts. 
 

 

1.   Shift-reduce: Both a shift action and a reduce action are possible in the same state 
 

(should we shift or reduce) 
 

Example: dangling-else problem 
 

 

2.   Reduce-reduce: Two or more distinct reduce actions are possible in the same state. 

(Which production should we reduce with 2). 



 

 

 
 
 
 
 

 

Example: 
 

Stmt id (param)      (a(i) is procedure call) 

Param id 

Expr  id (expr) /id   (a(i) is array subscript) 
 

Stack                                    input buffer                     action 
 

$…aa (i          ) ….$            Reduce by ? 
 

Should we reduce to param or to expr? Need to know the type of a: is it an array or a function. 

This information must flow from declaration of a to this use, typically via a symbol table. 

3.2 Shift – reduce parsing example: (Stack implementation) 
 

Grammar:       EE+E/E*E/(E)/id 
 

Input:  id1+id2+id3 
 

One Scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser. 

Shift reduce parsers use stack and an input buffer. 

The sequence of steps is as follows: 
 

1.         initialize stack with $. 
 

2.         Repeat until the top of the stack is the goal symbol and the input token is “end of life”. 
 

a.   Find the handle 
 

 

If we don‟ t have a handle on top of stack, shift an input symbol onto the 

stack. b.  Prune the handle 

 

if we have a handle (A) on the stack, reduce 

 
(i)  pop // symbols off the stack (ii)push A onto the stack. 

 

 

Stack input Action 

$ id1+id2*id3$ Shift 

$ id1 +id2*id3$ Reduce by Eid 

$E +id2*id3$ Shift 

$E+ id2*id3$ Shift 

$E+ id2 *id3$ Reduce by Eid 



 

 

 

 
 
 
 
 
 

$E+E *id3$ Shift 

$E+E* id3$ Shift 

$E+E* id3 $ Reduce by Eid 

$E+E*E $ Reduce by EE*E 

$E+E $ Reduce by EE+E 

$E $ Accept 

 

 
Example 2: 

 

Goal  Expr 
 

Expr  Expr + term | Expr – Term | Term 

Term  Tem & Factor | Term | factor | Factor 

Factor  number | id | (Expr) 

The expression grammar : x – z * y 
 

Stack Input Action 

$ Id - num * id Shift 

$ id - num * id Reduce factor  id 

$ Factor - num * id Reduce Term  Factor 

$ Term - num * id Reduce Expr  Term 

$ Expr - num * id Shift 

$ Expr - num * id Shift 

$ Expr – num * id Reduce Factor  num 

$ Expr – Factor * id Reduce Term  Factor 

$ Expr – Term * id Shift 

$ Expr – Term * id Shift 



 

 

 

 
 
 
 
 
 

$ Expr – Term * id - Reduce Factor  id 

$ Expr – Term & Factor - Reduce Term  Term * Factor 

$ Expr – Term - Reduce Expr  Expr – Term 

$ Expr - Reduce Goal  Expr 

$ Goal - Accept 

1.         shift until the top of the stack is the right end of a handle 
2.         Find the left end of the handle & reduce. 

 
 

 
Procedure: 

 
1.         Shift until top of stack is the right end of a handle. 

 

2.         Find the left end of the handle and reduce. 
 

*    Dangling-else problem: 
 

 

stmtif expr then stmt/if expr then stmt/other then example string is: if E1 then if E2 then S1 else 
 

S2 has two parse trees (ambiguity) and so this grammar is not of LR(k) type. 
 

Stmt 
 

 
 

If         expr    then         stmt 
 

 
 

E                     if         expr    then     stmt     else     stmt. 
 

 
 
 
 

Stmt 
 

 
 

If         expr    then         stmt else     stmt 
 

 
 

EI        if         expr    then     stmt        S2 
 

 
 

E2                   S1 



 

 

 
 
 
 
 

 

3.         OPERATOR – PRECEDENCE PARSING: 
 

Precedence/ Operator grammar:        The grammars having the property: 
 

1.         No production right side is should contain . 
 

2.         No production sight side should contain two adjacent non-terminals. 
 

Is called an operator grammar. 
 

Operator – precedence parsing has three disjoint precedence relations, <.,=and .> between certain 

pairs of terminals.   These precedence relations guide the selection of handles and have the 

following meanings: 
 

 
 

RELATION MEANING 

a<.b „a‟  yields precedence to „b‟ . 

a=b „a‟  has the same precedence „b‟  

a.>b „a‟  takes precedence over „b‟ . 

 

Operator precedence parsing has a number of disadvantages: 
 

1.         It is hard to handle tokens like the minus sign, which has two different precedences. 
 

2.         Only a small class of grammars can be parsed. 
 

3.         The relationship between a grammar for the language being parsed and the operator- 

precedence parser itself is tenuous, one cannot always be sure the parser accepts exactly the 

desired language. 

Disadvantages: 
 

1.         L(G) L(parser) 
 

2.         error detection 
 

3.         usage is limited 
 

4.         They are easy to analyse manually Example: 
 

Grammar:       EEAE|(E)|-E/id 
 

A+|-|*|/|


Input string:    id+id*id 
 

The operator – precedence relations are: 



 

 

 

 
 
 
 
 
 

 Id + * $ 

Id  .> .> .> 

+ <. .> <. .> 

* <. .> .> .> 

$ <. <. <.  

Solution:         This is not operator grammar, so first reduce it to operator grammar form, by 
 

eliminating adjacent non-terminals. 

Operator grammar is: 

EE+E|E-E|E*E|E/E|EE|(E)|-E|id 
 

The input string with precedence relations interested is: 
 

$<.id.> + <.id.> * <.id.> $ 
 

Scan the string the from left end until first .> is encounted. 
 

$<.id.>+<.id.>*<.id.<$ 
 

This occurs between the first id and +. 
 

 

Scan backwards (to the left) over any =‟ s until a <. Is encounted.  We scan backwards to $. 
 

$<.id.>+<.id.>*<.id.>$ 
 

   


Everything to the left of the first .> and to the right of <. Is called handle.  Here, the handle is the 

first id. 

Then reduce id to E.  At this point we have: 

E+id*id 

 

By repeating the process and proceding in the same way: 
 

$+<.id.>*<.id.>$ 
 

substitute Eid, 
 

After reducing the other id to E by the same process, we obtain the right-sentential form 
 
 

E+E*E 
 

Now, the 1/p string afte detecting the non-terminals sis: 
 

 $+*$ 



 

 

 
 
 
 
 

 

Inserting the precedence relations, we get: 
 

$<.+<.*.>$ 
 

   


The left end of the handle lies between + and * and the right end between * and $.  It indicates 

that, in the right sentential form E+E*E, the handle is E*E. 

Reducing by EE*E, we get: 
 
 

E+E 
 

Now the input string is: 
 

$<.+$ 
 

Again inserting the precedence relations, we get: 
 

$<.+.>$ 
 

   


reducing by EE+E, we get, 
 

$ $ 
 

and finally we are left with: 
 
 

E 
 

Hence accepted. 
 

Input string Precedence relations 
 

inserted 

Action 

id+id*id $<.id.>+<.id.>*<.id.>$  

E+id*id $+<.id.>*<.id.>$ Eid 

E+E*id $+*<.id.>$ Eid 

E+E*E $+*$  

E+E*E $<.+<.*.>$ EE*E 

E+E $<.+$  

E+E $<.+.>$ EE+E 

E $$ Accepted 



 

 

 
 
 
 
 

 

5.  LR PARSING INTRODUCTION: 
 

The "L" is for left-to-right scanning of the input and the "R" is for constructing a 

rightmost derivation in reverse. 

 
 

5.2 WHY LR PARSING: 
 

1.   LR  parsers  can  be  constructed  to  recognize  virtually  all 

programming-language constructs for which context-free grammars can 

be written. 

2.   The  LR  parsing  method  is  the  most  general  non-backtracking  shift- 

reduce  parsing  method   known,   yet   it   can   be   implemented   as 

efficiently  as  other  shift-reduce methods. 

3.   The class of grammars that can be parsed using LR methods is a proper 

subset of the class of grammars that can be parsed with predictive parsers. 

4.   An LR parser can detect a syntactic error as soon as it is possible to do so 

on a left-to-right scan of the input. 

The  disadvantage is  that  it  takes  too  much  work to  constuct  an  LR  parser by 

hand for a typical programming-language grammar. But there are lots of LR parser 

generators available to make this task easy. 

 
5.3 LR PARSERS: 

 

LR(k) parsers are most general non-backtracking shift-reduce parsers.  Two cases of interest are 

k=0 and k=1.  LR(1) is of practical relevance. 



 

 

 
 
 
 
 

 

„L‟  stands for “Left-to-right” scan of input. 
 

„R‟  stands for “Rightmost derivation (in reverse)”. 
 

 

„K‟  stands for number of input symbols of look-a-head that are used in making parsing 

decisions. 
 

When (K) is omitted, „K‟  is assumed to be 

1. 
 

LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for 

handle recognition. 

LR(1) parsers recognize languages that have an LR(1) grammar. 

A grammar is LR(1) if, given a right-most derivation 

 

Sr0r1r2- - - rn-1rnsentence. 
 

We can isolate the handle of each right-sentential form ri and determine the production by which 

to reduce, by scanning ri  from left-to-right, going atmost 1 symbol beyond the right end of the 

handle of ri. 

Parser accepts input when stack contains only the start symbol and no remaining input symbol 

are left. 

LR(0) item:     (no lookahead) 
 

Grammar rule combined with a dot that indicates a position in its RHS. 
 

Ex– 1: S
I 
 .S$ S.x 

S.(L) 

Ex-2:  AXYZ generates 4LR(0) items – 
 
 

A.XYZ 

AX.YZ 

AXY.Z 

AXYZ. 
 

 

The „.‟  Indicates how much of an item we have seen at a given state in the 

parse. 
 

A.XYZ indicates that the parser is looking for a string that can be derived from XYZ. 



 

 

 
 
 
 
 
 
 

. 

 
 
 
 
 

 
AXY.Z indicates that the parser has seen a string derived from XY and is looking for one 

derivable from Z. 

        LR(0) items play a key role in the SLR(1) table construction algorithm. 
 

        LR(1) items play a key role in the LR(1) and LALR(1) table construction algorithms. 

LR parsers have more information available than LL parsers when choosing a production: 

*          LR knows everything derived from RHS plus „K‟  lookahead symbols. 
 

*          LL just knows „K‟  lookahead symbols into what‟ s derived from RHS. 
 

Deterministic context free languages: 

LR (1) languages 

Preccdence 
 

Languages           LL 
 

languages 
 
 
 
 

5.4 LR PARSING ALGORITHM: 
 

The schematic form of an LR parser is shown below: 
 

INPUT a1        ……    ai 
 

……    an        & 
 

 
 

STACK 
 

 

Sm 

Xm 

Sm-1 

Xm-1 

 
 
LR                                          Out put 



 

 

 
 
 
 
 

 

It consists of an input, an output, a stack, a driver program, and a parsing table that has two parts: 
 

action and goto. 
 

The LR parser program determines Sm, the current state on the top of the stack, and ai, the 

current input symbol.  It then consults action [Sm, ai], which can have one of four values: 

1.         Shift S, where S is a state. 
 

2.         reduce by a grammar production A


3.         accept and 
 

4.         error 
 

The function goes to takes a state and grammar symbol as arguments and produces a state.  The 

goto function of a parsing table constructed from a grammar G using the SLR, canonical LR or 

LALR method is the transition function of DFA that recognizes the viable prefixes of G.  (Viable 

prefixes of G are those prefixes of right-sentential forms that can appear on the stack of a shift- 

reduce parser, because they do not extend past the right-most handle) 

 
5.6 AUGMENTED GRAMMAR: 

 

If G is a grammar with start symbol S, then G
I
, the augmented grammar for G  with a new start 

symbol S
I 
and production S

I
S. 

The purpose of this new start stating production is to indicate to the parser when it should stop 

parsing and announce acceptance of the input i.e., acceptance occurs when and only when the 

parser is about to reduce by S
I
S. 

 
CONSTRUCTION OF SLR PARSING TABLE: 

 

Example: 
 

The given grammar is: 
 

1.         EE+T 
 

2.         E T 
 

3.         T T*F 
 

4.         TF 
 

5.         F(E) 
 

6.         Fid Step I: The Augmented grammar is: 



 

 

 
 
 
 
 

 

E
I
E 

 

EE+T 

ET 

TT*F 

TF 

F(E) 

Fid 

 

Step II:The collection of LR (0) items are: 

I0:        E
I
.E 

E.E+T 
 

E.T 

T.T*F 

T.F 

F.(E) 

F.id 

Start with start symbol after since ( ) there is E, start writing all productions of E. 
 

Start writing „T‟  

productions 
 

Start writing F productions 
 

Goto (I0,E):     States have successor states formed by advancing the marker over the symbol it 

preceeds.   For state 1 there are successor states reached by advancing the masks over the 

symbols E,T,F,C or id.  Consider, first, the 

I1:        E 
I
E. -          reduced Item (RI) 

 
 

EE.+T 
 

Goto (I0,T): 
 

I2:        ET.  -          reduced Item (RI) 



 

 

 
 
 
 
 

 
TT.*F 

 

Goto (I0,F): 
 

I2:        ET.  -          reduced item (RI) 
 
 

TT.*F 
 

Goto (I0,C): 
 

 

I4:       F(.E) 
 

 

E.E+T 

E.T 

T.T*F 

T.F 
 

F.(E) 

F.id 

 

If „.‟  Precedes non-terminal start writing its corresponding production.  Here first E then T 

after that F. 

Start writing F productions. 

Goto (I0,id): 

I5:        F id. -          reduced item. 
 

E successor (I, state), it contains two items derived from state 1 and the closure operation adds 

no more (since neither marker precedes a non-terminal).  The state I2 is thus: 

Goto (I1,+): 
 

I6:        EE+.T                     start writing T productions 
 
 

T.T*F 
 

T.F                                start writing F productions 
 

F.(E) 

F.id 



 

 

 
 
 
 
 

 

Goto (I2,*): 
 

I7:        TT*.F                     start writing F productions 
 

 

F.(E) 
 

 

F.id 
 

Goto (I4,E): 
 

 

I8:       F(E.) 
 

 

EE.+T 
 

Goto (I4,T): 
 

I2:        ET.                          these are same as I2. 

 
 

TT.*F 
 

Goto (I4,C): 
 

 

I4:       F(.E) 
 

 

E.E+T 

E.T 

T.T*F 

T.F 
 

F.(E) 

F.id 

 

goto (I4,id): 
 

I5:        Fid. -          reduced item 
 

Goto (I6,T): 
 

I9:        EE+T.         -          reduced item 



 

 

 
 
 
 
 

 
TT.*F 

 

Goto (I6,F): 
 

I3:        TF.              -          reduced item 
 

Goto (I6,C): 
 

 

I4:       F(.E) 
 

 

E.E+T 

E.T 

T.T*F 

T.F 
 

F.(E) 

F.id 

 

Goto (I6,id): 
 

I5:        Fid.             -          reduced item. 

Goto (I7,F): 

I10:      TT*F          -          reduced item 
 

Goto (I7,C): 
 

 

I4:       F(.E) 
 

 

E.E+T 

E.T 

T.T*F 

T.F 
 

F.(E) 

F.id 

 

Goto (I7,id): 
 

I5:        Fid.             -          reduced item 



 

 

 
 
 
 
 

 

Goto (I8,)): 
 

I11:      F(E).           -          reduced item 
 

Goto (I8,+): 
 

I11:      F(E).           -          reduced item 
 

Goto (I8,+): 
 

 

I6:       EE+.T 
 

 

T.T*F 

T.F 

F.(E) 

F.id 
 

 

Goto (I9,+): 
 

I7:        TT*.f 
 

 

F.(E) 
 

 

F.id 
 

Step IV:          Construction of Parse table: 
 
 

Construction must proceed according to the algorithm 4.8 
 

Sshift items 
 

Rreduce items 
 

Initially E
I
E. is in I1 so, I = 1. 

 

Set action [I, $] to accept i.e., action [1, $] to Acc 
 

Action         Goto 

State Id + * ( ) $ E T F 

I0 S5   S4   1 2 3 

1  S6    Accept    

2  r2 S7  R2 R2    



 

 

 

 
 
 
 
 
 

3  R 4 R 4  R4 R4    

4 S5   S4   8 2 3 

5  R 6 R 6  R6 R6    

6 S5   S4    9 3 

7 S5   S4     10 

8  S 6   S11     

9  R1 S7  r1 r1    

10  R3 R3  R3 R3    

11  R5 R5  R5 R5    

 

As there are no multiply defined entries, the grammar is SLR®. 
 

STEP – III Finding FOLLOW ( ) set for all non-terminals.  

 

Relevant production 
 

FOLLOW (E) = {$} U FIRST (+T) U FIRST ( ) )                E
E
/B + 

T
/B 

 

= {+, ), $}                                                       F(E) 

B

FOLLOW (T) = FOLLOW (E) U                                          ET 

FIRST (*F) U                                               TT*F 

FOLLOW (E)                                               EE+T 

B 
 

= {+,*,),$} 
 

FOLLOW (F) =         FOLLOW (T) 
 

=         {*,*,),$} 
 

Step – V: 
 

1.         Consider I0: 
 

1.   The item F.(E) gives rise to goto (I0,C) = I4, then action [0,C] = shift 4 
 

2.   The item F.id gies rise goto (I0,id) = I4, then action [0,id] = shift 5 
 

 

the other items in I0 yield no actions. 

Goto (I0,E) = I1 then goto [0,E] = 1 



 

 

 
 
 
 
 

 

Goto (I0,T) = I2 then goto [0,T] = 2 
 

Goto (I0,F) = I3 then goto [0,F] = 3 
 

2.   Consider I1: 
 

 

1.   The item E
I
E. is the reduced item, so I = 1 

 

 

This gives rise to action [1,$] to accept. 
 

2.   The item EE.+T gives rise to 
 

 

goto (I1,+)=I6, then action [1,+] = shift 6. 
 

3.   Consider I2: 

1.   The item ET. is the reduced item, so take FOLLOW (E), 

FOLLOW (E)  = {+,),$} 
 

The first item +, makes action [Z,+] = reduce ET. 
 

ET is production rule no.2.  So action [Z,+] = reduce 2. 

The second item, makes action [Z,)] = reduce 2 

The third item $, makes action [Z,$] = reduce 2 
 

2.   The item TT.*F gives rise to 
 

 

goto [I2,*]=I7, then action [Z,*] = shift 7. 
 

4.   Consider I3: 
 

 

1.   TF.  is the reduced item, so take FOLLOW (T). 

FOLLOW (T) = {+,*,),$} 

So, make action [3,+] = reduce 4 
 
 
 

Action [3,*] = reduce 4 
 

Action [3,)] = reduce 4 



 

 

 
 
 
 
 

 

Action [3,$] = reduce 4 
 

 
 
 

In forming item sets a closure operation must be performed to ensure that whenever the marker 

in an item of a set precedes a non-terminal, say E, then initial items must be included in the set 

for all productions with E on the left hand side. 

The first item set is formed by taking initial item for the start state and then performing the 

closure operation, giving the item set; 

We construct the action and goto as follows: 
 

1.         If there is a transition from state I to state J under the terminal symbol K, then set 

action [I,k] to SJ. 

2.         If there is a transition under a non-terminal symbol a, say from state „i‟  to state 
„J‟ , 

 

set goto [I,A] to SJ. 
 

3.         If state I contains a transition under $ set action [I,$] to accept. 
 

4.         If there is a reduce transition #p from state I, set action [I,k] to reduce #p for all 

terminals k belonging to FOLLOW (A) where A is the subject to production #P. 

If  any  entry  is  multiply  defined  then  the  grammar  is  not  SLR(1).    Blank  entries  are 

represented by dash (-). 

 

5.         Consider I4 items: 
 

The item Fid gives rise to goto [I4,id] = I5 so, 

Action (4,id)  shift 5 

The item F.E action (4,c) shift 4 
 

The item goto (I4,F)  I3, so goto [4,F] = 3 
 

The item goto (I4,T)  I2, so goto [4,F] = 2 
 

The item goto (I4,E)  I8, so goto [4,F] = 8 
 

 

6.         Consider I5 items: 
 

Fid. Is the reduced item, so take FOLLOW (F). 
 
 

FOLLOW (F) = {+,*,),$} 



 

 

 
 
 
 
 

 
Fid is rule no.6 so reduce 6 

 

Action (5,+) = reduce 6 
 

Action (5,*) = reduce 6 
 

Action (5,)) = reduce 6 
 

Action (5,)) = reduce 6 
 

Action (5,$) = reduce 6 
 

 

7.         Consider I6 items: 
 

goto (I6,T) = I9, then goto [6,T] = 9 

goto (I6,F) = I3, then goto [6,F] = 3 

goto (I6,C) = I4, then goto [6,C] = 4 

goto (I6,id) = I5, then goto [6,id] = 5 
 

8. 
 

 
1. 

Consider I7 items: 
 

goto (I7,F) = I10, then goto [7,F] = 10 

 2. goto (I7,C) = I4, then action [7,C] = shift 4 

 3. goto (I7,id) = I5, then goto [7,id] = shift 5 

 

9. 
 

 
 

1. 

 

Consider I8 items: 
 

goto (I8,)) = I11, then action [8,)] = shift 11 

 2. goto (I8,+) = I6, then action [8,+] = shift 6 

 

10. 
  

Consider I9 items: 

 1. EE+T. is the reduced item, so take FOLLOW (E). 

 

FOLLOW (E) = {+,),$} 
 

EE+T is the production no.1., so 
 

Action [9,+] = reduce 1 
 

Action [9,)] = reduce 1 
 

Action [9,$] = reduce 1 
 

 

2.   goto [I5,*] = I7, then acgtion [9,*] = shift 7. 



 

 

 
 
 
 
 
 
 

 
11.       Consider I10 items: 

 

1.   TT*F. is the reduced item, so take 
 
 

FOLLOW (T) = {+,*,),$} 
 

TT*F is production no.3., so 
 

Action [10,+] = reduce 3 
 

Action [10,*] = reduce 3 
 

Action [10,)] = reduce 3 
 

Action [10,$] = reduce 3 
 

 

12.       Consider I11 items: 
 

1.   F(E). is the reduced item, so take 
 
 

FOLLOW (F) = {+,*,),$} 
 

F(E) is production no.5., so 
 

Action [11,+] = reduce 5 
 

Action [11,*] = reduce 5 
 

Action [11,)] = reduce 5 
 

Action [11,$] = reduce 5 
 

 

VI       MOVES OF LR PARSER ON id*id+id: 
 

 

 
1. 

STACK 
 

0 

INPUT 
 

id*id+id$ 

ACTION 
 

shift by S5 

2. 0id5 *id+id$ sec 5 on * 

 reduce by Fid 

If A 

Pop 2*| | symbols. 

=2*1=2 symbols. 

Pop 2 symbols off the stack 
 

State 0 is then exposed on F. 



 

 

 
 
 
 
 

 

 Since goto of state 0 on F is 
 

3, F and 3 are pushed onto 

the stack 

3. 0F3 *id+id$ reduce by T F 

   pop 2 symbols push T.  Since 

   goto of state 0 on T is 2, T 
 

and 2, T and 2 are pushed 

 

 
4. 

 

 
0T2 

 

 
*id+id$ 

onto the stack. 
 

shift by S7 

5. 0T2*7 id+id$ shift by S5 

6. 0T2*7id5 +id$ reduce by r6 i.e. 

   F id 

   Pop 2 symbols, 

   Append F, 
 

Secn 7 on F, it is 10 

7. 0T2*7F10 +id$ reduce by r3, i.e., 

   T T*F 

   Pop 6 symbols, push T 

   Sec 0 on T, it is 2 
 

Push 2 on stack. 

8. 0T2 +id$ reduce by r2, i.e., 

   E T 

   Pop two symbols, 
 

Push E 

   See 0 on E.  It 10 1 
 

Push 1 on stack 

9. 0E1 +id$ shift by S6. 

10. 0E1+6 id$ shift by S5 

11. 0E1+6id5 $ reduce by r6 i.e., 



 

 

 
 
 
 
 

 
 
 
 

 
on F 

F id 
 

Pop 2 symbols, push F, see 6 
 

 
 

It is 3, push 3 
 

12. 0E1+6F3                     $                                  reduce by r4, i.e., 

T F 

Pop2 symbols, 

Push T, see 6 on T 

It is 9, push 9. 

13. 0E1+6T9                    $                                  reduce by r1, i.e., 

E E+T 

Pop 6 symbols, push E 

See 0 on E, it is 1 

Push 1. 
 

14.                   0E1                             $                                  Accept 
 

 
 
 
 
 
 
 
 
 
 

Procedure for Step-V 
 

The parsing algorithm used for all LR methods uses a stack that contains alternatively state 

numbers and symbols from the grammar and a list of input terminal symbols terminated by $. 

For example: 
 
 

AAbBcCdDeEf/uvwxyz$ 
 

Where,            a. . .. f are state numbers 
 

A . . .. E are grammar symbols (either terminal or non-terminals) 
 

u . . .  z are the terminal symbols of the text still to be parsed. 

The parsing algorithm starts in state I0 with the configuration – 



 

 

 
 
 
 
 

 

0 / whole program upto $. 
 

Repeatedly apply the following rules until either a syntactic error is found or the parse is 

complete. 

(i)        If action [f,4] = Si then transform 
 

aAbBcCdDeEf / uvwxyz$ 
 

to 
 

aAbBcCdDeEfui / vwxyz$ 
 

This is called a SHIFT transition 
 

(ii)       If action [f,4] = #P and production # P is of length 3, say, then it will be of the form P 
 

 CDE where CDE exactly matches the top three symbols on the stack, and P is some non- 

terminal, then assuming goto [C,P] = g 

aAbBcCdDEfui / vwxyz$ 
 

will transform to 
 

aAbBcPg / vwxyz$ 
 

The symbols in the stack corresponding to the right hand side of the production have been 

replaced by the subject of the production and a new state chosen using the goto table.  This is 

called a REDUCE transition. 

(iii)      If action [f,u] = accept. Parsing is completed 
 

(iv)      If action [f,u] = - then the text parsed is syntactically in-correct. 
 

Canonical LR(O) collection for a grammar can be constructed by augmented grammar and two 

functions, closure and goto. 

The closure operation: 
 

If I is the set of items for a grammar G, then closure (I) is the set of items constructed from I by 

the two rules: 

(i)              initially, every item in I is added to closure (I). 
 
 
 
 

5.   CANONICAL LR PARSING: 
 

Example: 



 

 

 
 
 
 
 

 

S  CC 
 

C CC/d. 
 

1.  Number the grammar productions: 

 1. S CC 

 2. C CC 

 3. C d 

 

2. 
  

The Augmented grammar is: 

 

S
I 
S 

 

S CC 

C CC 

C d. 

 

Constructing the sets of LR(1) items: 

We begin with: 

S
I 
.S,$   begin with look-a-head (LAH) as $. 

 

We match the item [S
I 
.S,$] with the term [A .B,a] 

In the procedure closure, i.e., 
 

 

A = S
I
 

 

 
 

 = 




B = S  

 
 = 



a = $ 
 

Function closure tells us to add [B.r,b] for each production Br and terminal b in FIRST (a). 

Now r must be SCC, and since  is  and a is $, b may only be $.  Thus, 



 

 

 
 
 
 
 

 
S.CC,$ 

 

We continue to compute the closure by adding all items [C.r,b] for b in FIRST [C$] i.e., 

matching [S.CC,$] against [A.B,a] we have, A=S, =, B=C and a=$.  FIRST (C$) = 

FIRST © 

FIRST© = {c,d} 

We add items: 

C.cC,C 

CcC,d 

C.d,c 

C.d,d 

 

None of the new items have a non-terminal immediately to the right of the dot, so we have 

completed our first set of LR(1) items.  The initial I0 items are: 

I0              :          S
I
.S,$ 

 

S.CC,$ 

C.CC,c/d 

C.d.c/d 

Now we start computing goto (I0,X) for various non-terminals i.e., 

Goto (I0,S): 

 

I1     :          S
I
S.,$           reduced item. 

 
Goto (I0,C): 

 

I2              :          SC.C, $ 

C.cC,$ 

C.d,$ 
 

Goto (I0,C)      : 
 

I2  :  Cc.C,c/d 

C.cC,c/d 

C.d,c/d 



 

 

 
 
 
 
 

 

Goto (I0,d)      : 
 

I4              :          Cd., c/d        reduced item. 

Goto (I2,C)      :          I5 

:          SCC.,$         reduced item. 

Goto (I2,C)      :          I6 

Cc.C,$ 
 

C.cC,$ 

C.d,$ 

Goto (I2,d)      :          I7 
 

Cd.,$            reduced item. 

Goto (I3,C)      :          I8 

CcC.,c/d       reduced item. 
 

Goto (I3,C)      :          I3 
 

Cc.C, c/d 

C.cC,c/d 

C.d,c/d 

Goto (I3,d)       :          I4 
 

Cd.,c/d.        reduced item. 

Goto (I6,C)      :          I9 

CcC.,$         reduced item. 
 

Goto (I6,C)      :          I6 
 

Cc.C,$ 

C,cC,$ 

C.d,$ 

Goto (I6,d)      :          I7 
 

Cd.,$            reduced item. 
 

All are completely reduced.  So now we construct the canonical LR(1) parsing table – 
 

Here there is no neet to find FOLLOW ( ) set, as we have already taken look-a-head for each set 

of productions while constructing the states. 



 

 

 
 
 
 
 

 

Constructing LR(1) Parsing table: 
 

 Action goto 

State C D $ S C 

I0 S3 S4  1 2 

1   Accept   

2 S6 S7   5 

3 S3 S4   8 

4 R3 R3    

5   R1   

6 S6 S7   9 

7   R3   

8 R2 R2    

9   R2   

 

1.         Consider I0 items: 
 

The item S.S.$ gives rise to goto [I0,S] = I1 so goto [0,s] = 1. 
 

The item S.CC, $ gives rise to goto [I0,C] = I2 so goto [0,C] = 2. 
 

The item C.cC, c/d gives rise to goto [I0,C] = I3 so goto [0,C] = shift 3 
 

The item C.d, c/d gives rise to goto [I0,d] = I4 so goto [0,d] = shift 4 
 

2.         Consider I0 items: 
 

The item S
I
S.,$ is in I1, then set action [1,$] = accept 

 

3.         Consider I2 items: 
 

The item SC.C,$ gives rise to goto [I2,C] = I5. so goto [2,C] = 5 
 

The item C.cC, $ gives rise to goto [I2,C] = I6. so action [0,C] = shift The item C.d,$ gives 

rise to goto [I2,d] = I7. so action [2,d] = shift 7 

4.         Consider I3 items: 
 

The item C.cC, c/d gives rise to goto [I3,C] = I8. so goto [3,C] = 8 
 

The item C.cC, c/d gives rise to goto [I3,C] = I3. so action [3,C] = shift 3. 

The item C.d, c/d gives rise to goto [I3,d] = I4. so action [3,d] = shift 4. 



 

 

 
 
 
 
 

 

5.         Consider I4 items: 
 

The  item  C.d,  c/d  is  the  reduced  item,  it  is  in  I4   so  set  action  [4,c/d]  to  reduce  cd. 

(production rule no.3) 

6.         Consider I5 items: 
 

The item SCC.,$ is the reduced item, it is in I5 so set action [5,$] to SCC (production rule 

no.1) 

7.         Consider I6 items: 
 

The item Cc.C,$ gives rise to goto [I6 ,C] = I9. so goto [6,C] = 9 
 

The item C.cC,$ gives rise to goto [I6 ,C] = I6. so action [6,C] = shift 6 
 

The item C.d,$ gives rise to goto [I6 ,d] = I7. so action [6,d] = shift 7 
 

8.         Consider I7 items: 
 

The item Cd., $ is the reduced item, it is in I7. 

 

So set action [7,$] to reduce Cd (production no.3) 
 

9.         Consider I8 items: 
 

The item CCC.c/d in the reduced item, It is in Is, so set action[8,c/d] to reduce Ccd 
 

(production rale no .2) 
 

10.             Consider I9 items: 
 

The item C cC, $ is the reduced item, It is in I9, so set action [9,$] to reduce CcC 

(Production rale no.2) 

 

If the Parsing action table has no multiply –defined entries, then the given grammar is called 

as LR(1) grammar 

 
 

 
6.1 LALR PARSING: 

 
Example: 

 
1.   Construct C={I0,I1,……….,In} The collection of sets of LR(1) items 



 

 

 
 
 
 
 

 

2.   For each core present among the set of LR (1) items, find all sets having that core, and 

replace there sets by their Union# (clus them into a single term) 

 

I0     same as previous 

 

I1      “ 

 

I2      “ 

 
I36 – Clubbing item I3 and I6 into one I36 item. 

C cC,c/d/$ 

CcC,c/d/$ 

Cd,c/d/$ 

I5 some as previous 

 

I47 Cd,c/d/$ 

I89 CcC, c/d/$ 

LALR Parsing table construction: 
 

 
State 

Action Goto 

c d $ S C 

Io S36 S47  1 2 

1   Accept   

2 S36 S47   5 

36 S36 S47   89 

47 r3 r3    

5   r1   

89 r2 r2 r2   



 

 

 
 
 
 
 

 

UNIT-3 
 

Part-A:Semantic analysis 
 

1.      Intermediate code forms: 
 

An intermediate code form of source program is an internal form of a program created by the 

compiler while translating the program created by the compiler   while translating the program 

from  a  high  –level  language  to  assembly  code(or)object  code(machine  code).an  intermediate 

source form represents a more attractive form of target code than does assembly. An optimizing 

Compiler performs optimizations on the intermediate source form and produces an object module. 
 

Analysis + syntheses=translation 
 

 
 
 

Creates an          generate targe code 
 

Intermediate code 
 

In the analysis –synthesis model of a compiler, the front-end translates a source program 

into an intermediate representation from which the back-end generates target code, in many 

compilers the source code is translated into a language which is intermediate in complexity 

between a HLL and machine code .the usual intermediate code introduces symbols to stand for 

various temporary quantities. 
 

 
 

Parser                                Static 

checker 

Intermediate 

code generator 

Code 

generator 
 

 

position of intermediate code generator 
 

We assume that the source program has already been parsed and statically checked.. the various 

intermediate code forms are: 
 

a)  Polish  notation 

b)  Abstract syntax trees(or)syntax trees 

c)  Quadruples 

d)  Triples                     three address code 

e)  Indirect triples 

f)   Abstract machine code(or)pseudocopde 

a.   postfix notation: 



 

 

 
 
 
 
 

 

The ordinary (infix) way of writing the sum of a and b is with the operator in the middle: a+b. 

the postfix (or postfix polish)notation for  the same expression places the operator at the right 

end, as ab+. 
 

In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and e2 is 

indicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation because 

the position and priority (number of arguments) of the operators permits only one way to decode 

a postfix expression. 
 

Example: 
 

1. (a+b)*c in postfix notation is ab+c*,since ab+ represents the infix expression(a+b). 
 

2. a*(b+c)is abc+* in postfix. 
 

3. (a+b)*(c+d) is ab+cd+* in postfix. 
 

Postfix notation can be generalized to k-ary operators   for any k>=1.if   k-ary operator Ø is 

applied to postfix expression e1,e2,……….ek, then  the result is denoted by e1e2…….ek Ø. if 

we know the priority of each operator then we can uniquely decipher any postfix expression by 

scanning it from either end. 
 

Example: 
 

Consider the postfix string ab+c*. 
 

The right hand * says that there are two arguments to its left. since the next –to-rightmost symbol 

is c, simple operand, we know c must be the second operand of *.continuing to the left, we 

encounter the operator +.we know the sub expression ending in + makes up the first operand of 

*.continuing in  this way ,we deduce that ab+c* is “parsed” as (((a,b)+),c)*. 
 

b.  syntax tree: 
 

The  parse  tree  itself  is  a  useful  intermediate-language  representation  for  a  source 

program, especially in optimizing compilers where the intermediate code needs to extensively 

restructure. 
 

A parse tree, however, often contains redundant information which can be eliminated, 

Thus producing a more economical representation of the source program. One such variant of a 

parse tree is what is called an (abstract) syntax tree, a tree in which each leaf represents an 

operand and each interior node an operator. 



 

 

 
 
 
 
 

 

Exmples: 
 

1)  Syntax tree for the expression a*(b+c)/d 
 

/ 
 

*         d 

a          + 

b           c 
 

2)  syntax tree for if a=b then a:=c+d else b:=c-d 
 

 
 
 

If---then---else 
 

=               :=             := 
 

a          b      a         +    b         - 
 

c       d         c      d 
 

Three-Address Code: 

• In three-address code, there is at most one operator on the right side of aninstruction; that is, no 
built-up arithmetic expressions are permitted. 

x+y*z � t1 = y * z 

t2 = x + t1 
• Example 

 



 

 

 
 
 
 
 

 

Problems: 
Write the 3-address code for the following expression 
1. if(x + y * z > x * y +z) 

a=0; 

2. (2 + a * (b – c / d)) / e 

3. A :=b * -c + b * -c 

 
Address and Instructions 
• 
• Example Three-address code is built from two concepts: addresses and instructions. 

• An address can be one of the following: 

– A name: A source name is replaced by a pointer to its symbol table entry. 

• A name: For convenience, allow source-program names to 

Appear as addresses in three-address code. In an 

Implementation, a source name is replaced by a pointer to 

its symbol-table entry, where all information about the name is kept. 

– A constant 

• A constant: In practice, a compiler must deal with many different types of constants and 

variables 

– A compiler-generated temporary 

• A compiler-generated temporary. It is useful, especially in optimizing compilers, to create a 

distinct name each time a temporary is needed. These temporaries can be combined, if possible, 

when registers are allocated to variables. 

A list of common three-address instruction forms: 

Assignment statements 
– x= y op z, where op is a binary operation 
– x= op y, where op is a unary operation 

– Copy statement: x=y 

– Indexed assignments: x=y[i] and x[i]=y 

– Pointer assignments: x=&y, *x=y and x=*y 

Control flow statements 
– Unconditional jump: goto L 
– Conditional jump: if x relop y goto L ; if x goto L; if False x goto L 

– Procedure calls: call procedure p with n parameters and return y, is 

Optional 

param x1 

param x2 

… 
param xn 

call p, n 

 
– do i = i +1; while (a[i]<v); 



 

 

 

 
 
 
 
 
 

 
The multiplication i * 8 is appropriate for an array of elements that each take 8 units of space. 

 
C. quadruples: 
• Three-address instructions can be implemented as objects or as record with fields for the 
operator and operands. 

• Three such representations 

– Quadruple, triples, and indirect triples 

• A quadruple (or quad) has four fields: op, arg1, arg2, and result. 

Example 

D. Triples 
• A triple has only three fields: op, arg1, and arg2 
• Using triples, we refer to the result of an operation x op y by its position, rather by 

an explicit temporary name. 

Example 
 

 
 

 
 
 
 
 

d. Triples: 
• A triple has only three fields: op, arg1, and arg2 



 

 

 
 
 
 
 

 

• Using triples, we refer to the result of an operation x op y by its position, rather by an explicit 

temporary name. 

Example 

 
 

Fig: Representations of a = b * - c + b * - c 

 

 
 

Fig: Indirect triples representation of 3-address code 

-> The benefit of Quadruples over Triples can be seen in an optimizing compiler, where 

instructions are often moved around. 

->With  quadruples,  if  we  move  an  instruction  that  computes  a  temporary  t,  then  the 

instructions that use t require no change. With triples, the result of an operation is referred to by 

its position, so moving an instruction may require changing all references to that result. This 

problem does not occur with indirect triples. 

 
Single-Assignment   Static Form 
Static single assignment form (SSA) is an intermediate representation that facilitates certain code 
optimization. 

• Two distinct aspects distinguish SSA from three –address code. 



 

 

 
 
 
 
 

 

– All assignments in SSA are to variables with distinct names; hence the term static single- 

assignment. 

 

 

 
 

 
 

2.  Type Checking: 
•A compiler has to do semantic checks in addition to syntactic checks. 

 
•Semantic Checks 

 
–Static –done during compilation 

 
–Dynamic –done during run-time 

 
•Type checking is one of these static checking operations. 

 
–we may not do all type checking at compile-time. 

 
–Some systems also use dynamic type checking too. 

 
•A type system is a collection of rules for assigning type expressions to the parts of a program. 

 
•A type checker implements a type system. 

 
•A sound type system eliminates run-time type checking for type errors. 



 

 

 
 
 
 
 

 

•A programming language is strongly-typed, if every program its compiler accepts will execute 

without type errors. 
 

In practice, some of type checking operations is done at run-time (so, most of the programming 

languages are not strongly yped). 
 

–Ex: int x[100]; … x[i] most of the compilers cannot guarantee that i will be between 0 and 99 
 

 

Type Expression: 
•The type of a language construct is denoted by a type expression. 

 
•A type expression can be: 

 
–A basic type 

 
•a primitive data type such as integer, real, char, Boolean, … 

 
•type-error to signal a type error 

 
•void: no type 

 
–A type name 

 
•a name can be used to denote a type expression. 

 
–A type constructor applies to other type expressions. 

 
•arrays: If T is a type expression, then array (I,T)is a type expression where I denotes index 

range. Ex: array (0..99,int) 
 

•products: If T1and T2 are type expressions, then their Cartesian product T1 x T2 is a type 

expression. Ex: int x int 
 

•pointers: If T is a type expression, then pointer (T) is a type expression. Ex: pointer (int) 
 

•functions: We may treat functions in a programming language as mapping from a domain type 

D to a range type R. So, the type of a function can be denoted by the type expression D→R 

where D are R type expressions. Ex: int→int represents the type of a function which takes an int 

value as parameter, and its return type is also int. 
 

Type Checking of Statements: 
 

S ->d= E                                                                     { if (id.type=E.type then S.type=void 

else S.type=type-error } 



 

 

 
 
 
 
 

 

S ->if E then S1                                                          { if (E.type=boolean then S.type=S1.type 

else S.type=type-error } 

S->while E do S1                                                       { if (E.type=boolean then S.type=S1.type 

else S.type=type-error } 

 

 
 

Type Checking of Functions: 
 

E->E1( E2)                                                     { if (E2.type=s and E1.type=s t) then E.type=t 

else E.type=type-error } 

Ex: int f(double x, char y) { ... } 
 

f:  double x char->int 

argument types           return type 

 

 
 

Structural Equivalence of Type Expressions: 
 

•How do we know that two type expressions are equal? 
 

•As long as type expressions are built from basic types (no type names), we may use structural 

equivalence between two type expressions 
 

 
 
 

Structural Equivalence Algorithm (sequin): 
 

if (s and t are same basic types) then return true 
 

else if (s=array(s1,s2) and t=array(t1,t2)) then return (sequiv(s1,t1) and sequiv(s2,t2)) 
 

else if (s = s1 x s2and t = t1 x t2) then return (sequiv(s1,t1) and sequiv(s2,t2)) 
 

else if (s=pointer(s1) and t=pointer(t1)) then return (sequiv(s1,t1)) 
 

else if (s = s1  t1 t2) then return (sequiv(s1,t1) and sequiv(s2,t2)) 
 

else return false 



 

 

 
 
 
 
 

 

Names for Type Expressions: 
 

•In some programming languages, we give a name to a type expression, and we use that name as 

a type expression afterwards. 
 

type link = ↑cell;                                            ? p,q,r,s have same types ? 
 

var p,q : link; 
 

var r,s : ↑cell 
 

•How do we treat type names? 
 

–Get equivalent type expression for a type name (then use structural equivalence), or 
 

–Treat a type name as a basic type 
 

3.  Syntax Directed Translation: 
 

  A formalist called as syntax directed definition is used fort specifying translations for 

programming language constructs. 

  A syntax directed definition is a generalization of a context free grammar in which each 

grammar symbol has associated set of attributes and each and each productions is 

associated with a set of semantic rules 
 

Definition of (syntax Directed definition ) SDD : 
 

SDD is a generalization of CFG in which each grammar productions X->α is associated with it a 

set of semantic rules of the form 
 

a: = f(b1,b2…..bk) 
 

Where a is an attributes obtained from the function f. 
 

• A syntax-directed definition is a generalization of a context-free grammar in which: 
 

– Each grammar symbol is associated with a set of attributes. 
 

– This set of attributes for a grammar symbol is partitioned into two subsets called synthesized 

and inherited attributes of that grammar symbol. 
 

– Each production rule is associated with a set of semantic rules. 
 

•  Semantic  rules  set  up  dependencies  between  attributes  which  can  be  represented  by  a 

dependency graph. 



 

 

 
 
 
 
 

 

• This dependency graph determines the evaluation order of these semantic rules. 
 

• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may also 

have some side effects such as printing a value. 
 

The two attributes for non terminal are : 
 

1) Synthesized attribute (S-attribute) : (↑) 
 

An attribute is said to be synthesized attribute if its value at a parse tree node is determined from 

attribute values at the children of the node 
 

2) Inherited attribute: (↑,→) 
 

An inherited attribute is one whose value at parse tree node is determined in terms of attributes at 

the parent and | or siblings of that node. 
 

     The attribute can be string, a number, a type, a, memory location or anything else. 

 The parse tree showing the value of attributes at each node is called an annotated parse 

tree. 
 

The process of computing the attribute values at the node is called annotating or decorating the 

parse tree.Terminals can have synthesized attributes, but not inherited attributes. 
 

Annotated Parse Tree 
 

• A parse tree showing the values of attributes at each node is called an Annotated parse tree. 
 

•  The  process  of  computing  the  attributes  values  at  the  nodes  is  called  annotating  (or 

decorating) of the parse tree. 
 

• Of course, the order of these computations depends on the dependency graph induced by the 

semantic rules. 

Ex1:1) Synthesized Attributes : 

Ex: Consider the CFG : 

S→ EN 

E→ E+T 

E→E-T 

E→ T 

T→ T*F 

T→T/F 

T→F 

F→ (E) 

F→digit 

N→; 



 

 

 
 
 
 
 

 

Solution: The syntax directed definition can be written for the above grammar by using semantic 

actions for each production. 

 
Production rule                                                         Semantic actions 

 

 
 

S →EN                                                                        S.val=E.val 

E  →E1+T                                                                  E.val =E1.val + T.val 

E →E1-T                                                                     E.val = E1.val – T.val 

E →T                                                                          E.val =T.val 

T →T*F                                                                     T.val = T.val * F.val 

T →T|F                                                                       T.val =T.val | F.val 

F → (E)                                                                      F.val =E.val 

T  →F                                                                         T.val =F.val 

F →digit                                                                     F.val =digit.lexval 

N →;                                                                           can be ignored by lexical Analyzer as; I 

is terminating symbol 

 
For the Non-terminals E,T and F the values can be obtained using the attribute “Val”. 

 
The taken digit has synthesized attribute “lexval”. 

 
In S→EN, symbol S is the start symbol. This rule is to print the final answer of expressed. 

Following steps are followed to Compute S attributed definition 

1. Write the SDD using the appropriate semantic actions for corresponding production rule of the 

given Grammar. 
 

2. The annotated parse tree is generated and attribute values are computed. The Computation is 

done in bottom up manner. 
 

3. The value obtained at the node is supposed to be final output. 

PROBLEM 1: 

Consider the string 5*6+7; Construct Syntax tree, parse tree and annotated tree. 
 

Solution: 
 

The corresponding annotated parse tree is shown below for the string 5*6+7; 



 

 

 
 
 
 
 

 

Syntax tree: 
 

 
 

Annotated  parse tree : 
 

 
 

Advantages: SDDs are more readable and hence useful for specifications 
 

Disadvantages: not very efficient. 
 

Ex2: 
 

PROBLEM : Consider the grammar that is used for Simple desk calculator. Obtain 

the Semantic action and also the annotated parse tree for the string 

3*5+4n. 

L→En 

E→E1+T 



 

 

 
 
 
 
 

 

E→T 

T→T1*F 

T→F 

F→ (E) 

F→digit 

Solution : 

Production rule                                                          Semantic actions 

L→En                                                                          L.val=E.val 

E→E1+T                                                                    E.val=E1.val + T.val 

E→T                                                                           E.val=T.val 

T→T1*F                                                                     T.val=T1.val*F.val 
 

T→F                                                                           T.val=F.val 

F→(E)                                                                        F.val=E.val 

F→digit                                                                      F.val=digit.lexval 

The corresponding annotated parse tree U shown below, for the string 3*5+4n. 
 

 



 

 

 
 
 
 
 

 

Dependency Graphs: 
 

 
 

Dependency graph and topological sort: 

 For each parse-tree node, say a node labeled by grammar symbol X, the dependency 

graph has a node for each attribute associated with X. 

    If a semantic rule associated with a production p defines the value of synthesized attribute 

A.b in terms of the value of X.c. Then the dependency graph has an edge from X.c to A.b 

    If a semantic rule associated with a production p defines the value of inherited attribute 

B.c in terms of the value X.a. Then , the dependency graph has an edge from X.a to B.c. 

 
Applications of Syntax-Directed Translation 
• Construction of syntax Trees 
– The nodes of the syntax tree are represented by objects with a suitable number of fields. 

– Each object will have an op field that is the label of the node. 

– The objects will have additional fields as follows 

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor 

function Leaf (op, val) creates a leaf object. 

• If nodes are viewed as records, the Leaf returns a pointer to a new record for a leaf. 

• If the node is an interior node, there are as many additional fields as the node has children in 

the syntax tree. A constructor function 

Node takes two or more arguments: 
Node (op , c1,c2,…..ck) creates an object with first field op and k additional fields for the k 

children c1,c2,…..ck 

 
Syntax-Directed Translation Schemes 
A SDT scheme is a context-free grammar with program fragments embedded within production 
bodies .The program fragments are called semantic actions and can appear at any position within 

the production body. 

Any SDT can be implemented by first building a parse tree and then pre-forming the actions in a 

left-to-right depth first order. i.e during preorder traversal. 

The use of SDT‟ s to implement two important classes of SDD‟ s 
1. If the grammar is LR parsable, then SDD is S-attributed. 

2. If the grammar is LL parsable, then SDD is L-attributed. 



 

 

 
 
 
 
 

 

Postfix Translation Schemes 
The postfix SDT implements the desk calculator SDD with one change: the action for the first 
production prints the value. As the grammar is LR, and the SDD is S-attributed. 

L →E n {print(E.val);} 

E → E1 + T { E.val = E1.val + T.val } 

E → E1 - T { E.val = E1.val - T.val } 

E → T { E.val = T.val } 

T → T1 * F { T.val = T1.val * F.val } 

T → F { T.val = F.val } 

F → ( E ) { F.val = E.val } 

F → digit { F.val = digit.lexval } 

 



 

 

 
 
 
 
 

 

PART-B 
 

Symbol tables 
 

Symbol table: 
 

A symbol table is a major data structure used in a compiler: 
 

    Associates attributes with identifiers used in a program. 

    For instance, a type attribute is usually associated with each identifier. 

    A symbol table is a necessary component. 

    Definition (declaration) of identifiers appears once in a program 

    Use of identifiers may appear in many places of the program text 

    Identifiers and attributes are entered by the analysis phases 

    When processing a definition (declaration) of an identifier 

    In simple languages with only global variables and implicit declarations: 

    The scanner can enter an identifier into a symbol table if it is not already there 

    In block-structured languages with scopes and explicit declarations: 

    The parser and/or semantic analyzer enter identifiers and corresponding attributes 

    Symbol table information is used by the analysis and synthesis phases 

    To verify that used identifiers have been defined (declared) 

    To verify that expressions and assignments are semantically correct – type checking 

    To generate intermediate or target code 
 
 
 
 

Symbol Table Interface: 
 
 

The basic operations defined on a symbol table include: 

    allocate – to allocate a new empty symbol table 

    free – to remove all entries and free the storage of a symbol table 

    insert – to insert a name in a symbol table and return a pointer to its entry 

    lookup – to search for a name and return a pointer to its entry 

    set_attribute – to associate an attribute with a given entry 

    get_attribute – to get an attribute associated with a given entry 

    Other operations can be added depending on requirement 
 

For example, a delete operation removes a name previously inserted 
 

Some identifiers become invisible (out of scope) after exiting a block 



 

 

 
 
 
 
 

 
    This interface provides an abstract view of a symbol table. 

    Supports the simultaneous existence of multiple tables 

    Implementation can vary without modifying the interface 
 

Basic Implementation Techniques: 
 

First consideration is how to insert and lookup names 
 

Variety of implementation techniques 
 

Unordered List 
 

Simplest to implement 
 

Implemented as an array or a linked list 
 

Linked list can grow dynamically – alleviates problem of a fixed size array 

Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 

Ordered List 

If an array is sorted, it can be searched using binary search – O(log2 n) 

Insertion into a sorted array is expensive – O(n) on average 

Useful when set of names is known in advance – table of reserved words 
 

Binary Search Tree 
 

Can grow dynamically 
 

Insertion and lookup are O(log2 n) on average 

 

Hash Tables and Hash Functions: 
 

    A hash table is an array with index range: 0 to TableSize – 1 

    Most commonly used data structure to implement symbol tables 

    Insertion and lookup can be made very fast – O(1) 

    A hash function maps an identifier name into a table index 

    A hash function, h(name), should depend solely on name 
    h(name) should be computed quickly 

    h should be uniform and randomizing in distributing names 

    All table indices should be mapped with equal probability 

    Similar names should not cluster to the same table index. 



 

 

 
 
 
 
 

 

Storage Allocation: 
 

    Compiler must do the storage allocation and provide access to variables and data 

    Memory management 

    Stack allocation 

    Heap management 

    Garbage collection 
 

Storage Organization: 
 

 
 

• Assumes a logical address space 
 

  Operating system will later map it to physical addresses, decide how touse cache 

memory, etc. 
 

• Memory typically divided into areas for 
 

    Program code 

    Other static data storage, including global constants and compilergenerated data 

    Stack to support call/return policy for procedures 

    Heap to store data that can outlive a call to a procedure 
 

 
 
 

Static vs. Dynamic Allocation: 
 

    Static: Compile time, Dynamic: Runtime allocation 

    Many compilers use some combination of following 

    Stack storage: for local variables, parameters and so on 

    Heap storage: Data that may outlive the call to the procedure that created it 



 

 

 
 
 
 
 

 

    Stack allocation is a valid allocation for procedures since procedure calls are nest 
 

Example: 
 

Consider the quick sort program 
 

 
 

Activation for Quicksort: 
 

 



 

 

 
 
 
 
 

 

Activation tree representing calls during an execution of quicksort: 
 

 
 

Activation records 
    Procedure calls and returns are usually managed by a run-time stack called the control 

stack. 

    Each live activation has an activation record (sometimes called a frame) 

    The root of activation tree is at the bottom of the stack 

    The current execution path specifies the content of the stack with the last 

   Activation has record in the top of the stack. 
 

A General Activation Record 
 

 
 

Activation Record 

    Temporary values 

    Local data 

    A saved machine status 

    An “access link” 

    A control link 



 

 

 
 
 
 
 

 
    Space for the return value of the called function 

    The actual parameters used by the calling procedure 
 

 
 

    Elements in the activation record: 

    Temporary values that could not fit into registers. 

    Local variables of the procedure. 

 Saved machine status for point at which this procedure called. Includes return address 

and contents of registers to be       restored. 

    Access link to activation record of previous block or procedure in lexical scope chain. 

    Control link pointing to the activation record of the caller. 

    Space for the return value of the function, if any. 

    actual parameters (or they may be placed in registers, if possible) 
 

Downward-growing stack of activation records: 
 

 
 
 

 



 

 

 
 
 
 
 

 

Designing Calling Sequences: 
 

    Values communicated between caller and callee are generally placed at the beginning of 

callee‟ s activation record 

    Fixed-length items: are generally placed at the middle 

 Items whose size may not be known early enough: are placed at the end of activation 

record 

 We must locate the top-of-stack pointer judiciously: a common approach is to have it 

point to the end of fixed length fields 
 

Access to dynamically allocated arrays: 
 

 
 

 
 
 

ML: 

    ML is a functional language 

 Variables are defined, and have their unchangeable values initialized, by a statementof 

the form: 
val (name) = (expression) 

    Functions are defined using the syntax: 



 

 

 
 
 
 
 

 

fun (name) ( (arguments) ) = (body) 

    For function bodies we shall use let-statements of the form: 

let (list of definitions) in (statements) end 
 

 
 

A version of quick  sort, in ML style, using nested functions: 
 

 
 

Access links for finding nonlocal data: 
 

 



 

 

 
 
 
 
 

 

Sketch of ML program that uses function-parameters: 
 

 \ 
 

Actual parameters carry their access link with them: 
 

 
 

Maintaining the Display: 
 

 
 
 

 



 

 

 
 

 
 
 
 
 

 

Memory Manager: 
 

    Two basic functions: 

    Allocation 

    Deallocation 

    Properties of memory managers: 

    Space efficiency 

    Program efficiency 

    Low overhead 
 

Typical Memory Hierarchy Configurations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Locality in Programs: 
 

The conventional wisdom is that programs spend 90% of their time executing 10% of the code: 
 

    Programs often contain many instructions that are never executed. 

 Only a small fraction of the code that could be invoked is actually executed in atypical 

run of the program. 

 The  typical  program  spends  most  of  its  time  executing  innermost  loops  and  tight 

recursive cycles in a program. 



 

 

 
 
 
 
 

 

UNIT-4 

 
Part-A: CODE OPTIMIZATION 

 

1.   INTRODUCTION 

 
 The code produced by the straight forward compiling algorithms can often be made to 

run faster or take less space, or both. This improvement is achieved by program 

transformations that are traditionally called optimizations. Compilers that apply code- 

improving transformations are called optimizing compilers. 

 
    Optimizations are classified into two categories. They are 

 
    Machine independent optimizations: 

 
    Machine dependant optimizations: 

 
1.1 Machine independent optimizations: 

 
Machine independent optimizations are program transformations that improve the target 

code without taking into consideration any properties of the target machine. 

 
1.2 Machine  dependant optimizations: 

 
Machine  dependant optimizations are based on register allocation and utilization of special 

machine- instruction sequences. 

 
1.3 The criteria  for code improvement transformations: 

 
 Simply  stated, the best program transformations are those that yield the most benefit for 

the least effort. 

 
 The   transformation must preserve the meaning of programs. That is, the optimization 

must not change  the output produced by a program for a given input, or cause an error 

such as division by zero, that was not present in the original source program. At all times 

we take the “safe”  approach of missing an opportunity to apply a transformation rather 

than risk changing what the program does. 

 
 A transformation  must, on the average, speed up programs by a measurable amount. We 

are also interested in reducing the size of the compiled code although the size of the code 

has less importance than it once had. Not every transformation succeeds in improving 

every program, occasionally an “optimization” may slow down a program slightly. 

 
    The transformation must be worth the effort. It does not make sense for a compiler writer 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


 

 

 
 
 
 
 

 

to expend the intellectual effort to implement a code improving transformation and to 

have the compiler expend the additional time compiling source programs if this effort is 

not repaid when the target programs are executed. “Peephole” transformations of this 

kind are simple enough and beneficial enough to be included in any compiler. 
 

 

 Flow     analysis  is  a  fundamental  prerequisite  for  many  important  types  of  code 

improvement. 

    Generally control flow analysis precedes data flow analysis. 

    Control  flow analysis (CFA) represents flow of control usually in form of graphs, CFA 

constructs  such as 

 
o control flow graph 
o Call graph 

 
 Data  flow analysis (DFA) is the process of ascerting and collecting information prior to 

program   execution about the possible modification, preservation, and use of certain 

entities  (such as values or attributes of variables) in a computer program. 
 

 
 

2.   PRINCIPAL  SOURCES OF OPTIMISATION 

 
 A  transformation of a program is called local if it can be performed by looking only at 

the statements  in a basic block; otherwise, it is called global. 

 
 Many  transformations  can  be  performed  at  both  the  local  and  global  levels.  Local 

transformations are usually performed first. 

 
2.1 Function-Preserving Transformations 

 
 There  are  a  number  of  ways  in  which  a  compiler  can  improve  a  program  without 

changing the function it computes. 

 
    The transformations 

 
o Common sub expression elimination, 
o Copy propagation, 
o Dead-code elimination, and 
o Constant    folding,    are    common    examples    of    such    function-preserving 

transformations.  The  other  transformations  come  up  primarily  when  global 
optimizations are performed. 

 Frequently, a program will include several calculations of the   same value, such as an 

offset in an array. Some of the duplicate calculations cannot   be avoided by the 

programmer because they lie below  the level  of detail  accessible within  the source 

language. 
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2.2 Common Sub expressions elimination: 
 

 

 An occurrence of an expression E is called a common sub-expression if E was 

previously computed, and the values of variables in E have not changed since the 

previous computation. We can avoid recomputing the expression if we can use the 

previously computed value. 

 
 For example t1: 

=4*i t2: 

=a [t1] t3: 

=4*j 

t4:=4*i 

t5: =n 

t 6: =b [t 4] +t 5 

 
The above  code can be optimized using the common sub-expression elimination as 

t1:   =4*i 

t2:       =a 

[t1]     t3: 

=4*j    t5: 

=n 

t6: =b [t1] +t5 

 
The common sub expression t 4: =4*i is eliminated as its computation is already in t1. 

And value of i is not been changed from definition to use. 

 
2.3 Copy  Propagation: 

 
Assignments  of the form f : = g called copy statements, or copies for short. The idea behind 

the copy-propagation  transformation  is  to  use  g for f,  whenever  possible after the copy 

statement f: = g. Copy propagation means use of one variable instead of another. This  may 

not appear to be an improvement, but as we shall see it gives us an opportunity to eliminate x. 

 
For example: 

x=Pi; 

 
…… 

A=x*r*r; 

 
The optimization using copy propagation can be done as follows: 

A=Pi*r*r; 

Here the variable x is eliminated 
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2.4  Dead-Code Eliminations: 
 

A variable is live at a point in a program if its value can be used subsequently; otherwise, it 

is dead at that point. A related idea is dead or useless code, statements that compute values 

that never get used. While the programmer is unlikely to   introduce any dead code 

intentionally, it may appear as the result of previous transformations.  An optimization can 

be done by eliminating dead code. 

 
Example: 

i=0; 

if(i=1) 

{ 

a=b+5; 

} 

 
Here, „if‟  statement is dead code because this condition will never get satisfied. 

 
2.5 Constant folding: 

 
o We can eliminate both the test and printing from the object code. More generally, 

deducing at compile time that the value of an expression is a constant and using 

the constant instead is known as constant folding. 

 
o One  advantage of copy propagation is that it often turns the copy statement into 

dead code. 

 
For example, 

a=3.14157/2  can be replaced by 

a=1.570  there by eliminating a division operation. 

 
2.6 Loop  Optimizations: 

 
o We now   give a brief introduction to a very important place for optimizations, 

namely loops,  especially the inner loops where programs tend to spend the bulk 
of their time. The running  time of a program may be improved if we decrease the 
number of instructions in an inner  loop, even if we increase the amount of code 
outside that loop. 

 
o Three techniques are important for loop optimization: 

    code  motion, which moves code outside a loop; 
 Induction -variable elimination, which we apply to replace variables from 

inner loop. 

 Reduction  in  strength,  which  replaces  and  expensive  operation  by  a 

cheaper one, such as a multiplication by an addition. 
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2.7 Code Motion: 

 
    An important modification that decreases the amount of code in a loop is code motion. 

This transformation takes an expression that yields the same result independent of the 

number of times a loop is executed ( a loop-invariant computation) and places the 

expression before the loop. Note that the notion “before the loop” assumes the existence 

of  an  entry  for  the  loop.  For  example,  evaluation  of  limit-2  is  a  loop-invariant 

computation in the following while-statement: 

 
while (i <= limit-2) /* statement does not change Limit*/ 

Code motion will result in the equivalent of 

t= limit-2; 

while (i<=t)  /* statement does not change limit or t */ 

 
2.8 Induction Variables : 

 
    Loops are usually processed inside out. For example consider the loop around B3. 

    Note that the values of j and t4 remain in lock-step; every time the value of j decreases by 

1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 

induction variables. 

 
 When there are two or more induction variables in a loop, it may be possible to get rid of 

all but one, by the process of induction-variable elimination. For the inner loop around 

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4. 

 However, we can illustrate reduction in strength and illustrate a part of the process of 

induction-variable elimination. Eventually j will be eliminated when the outer loop of 

B2 - B5 is considered. 
 

 
 
 
 
 

Example: 

As the relationship t 4:=4*j surely holds after such an assignment to t 4 in Fig. and t4 is 

not  changed    elsewhere  in  the  inner  loop  around  B3,  it  follows  that  just  after  the 

statement j:=j -1   the relationship t4:= 4*j-4 must hold. We may therefore replace the 

assignment t 4:= 4*j by  t4:= t4-4. The only problem is that t 4 does not have a value 

when we enter block B3 for the   first time. Since we must maintain the relationship 

t4=4*j on entry to the block B3, we place  an initializations of t4 at the end of the block 

where j itself is initialized, shown by the dashed addition to block B1 in second Fig. 

 
The replacement of a multiplication by a subtraction will speed up  the object code if 

multiplication takes more time than addition or subtraction, as is the case on many machines. 
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2.9 Reduction in Strength: 

 
 Reduction in strength replaces expensive operations by equivalent cheaper ones on the 

target machine. Certain machine instructions are considerably cheaper than others and 

can often be used as special cases of more expensive operators. 

 
 For  example,  x²  is  invariably  cheaper  to  implement  as  x*x  than  as  a  call  to  an 

exponentiation  routine.  Fixed-point  multiplication  or  division  by a  power  of  two  is 

cheaper to implement as a shift. Floating-point division by a constant can be implemented 

as multiplication by a constant, which may be cheaper. 

 
3.   OPTIMIZATION OF BASIC BLOCKS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There are two  types of basic block optimizations. They are : 

Structure -Preserving Transformations 

Algebraic  Transformations 
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3.1 Structure- Preserving Transformations: 
 

The primary Structure-Preserving Transformation on basic blocks are: 

 
     Common sub-expression elimination 

     Dead code elimination 

     Renaming of temporary variables 

     Interchange of two independent adjacent statements. 

 
3.2 Common  sub-expression elimination: 

 
Common sub   expressions need not be computed over and over again. Instead they can be 

computed once  and kept in store from where it‟ s referenced when encountered again – of 

course providing the variable values in the expression still remain constant. 

 
Example: 

a: =b+c 

b: =a-d 

c: =b+c 

d: =a-d 
 

The 2
nd 

and 4
th 

statements compute the same expression: b+c and a-d 

 
Basic block can be transformed to 

a: =b+c 

b: =a-d 

c: =a 

d: =b 

 
3.3 Dead code elimination: 

 
It‟ s possible that a large amount of dead (useless) code may exist in the program. 

This might be especially caused when introducing variables and procedures as part of 

construction or error -correction of a program – once declared and defined, one forgets to remove 

them in case they serve no purpose. Eliminating these will definitely optimize the code. 

3.4 Renaming of temporary variables: 

 
 A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is 

another temporary name, and change all uses of t to u. 

 
    In this we can transform a basic block to its equivalent block called normal-form block. 
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3.5Interchange of two independent adjacent statements: 
 

Two statements 

t1:=b+c 

t2:=x+y 

can be interchanged or reordered in its computation in the basic block when value of t1 

does not  affect the value of t2. 
 

 
 

3.6Algebraic  Transformations: 

 
    Algebraic  identities represent another important class of optimizations on basic blocks. 

This  includes simplifying expressions or replacing expensive operation by cheaper ones 

i.e.  reduction in strength. 

 
 Another   class of related optimizations is constant folding. Here we evaluate constant 

expressions  at compile time and replace the constant expressions by their values. Thus 

the  expression 2*3.14 would be replaced by 6.28. 
 

 

 The  relational operators <=, >=, <, >, + and = sometimes generate unexpected common 

sub  expressions. 

 
 Associative  laws may also be applied to expose common sub expressions. For example, 

if the source code has the assignments 

 
a :=b+c e 

:=c+d+b 

 
the following intermediate code may be generated: 

 
a 

:=b+c t 

:=c+d 

 
e :=t+b 

 
Example: 

 
x:=x+0 can be removed 

 
x:=y**2 can be replaced by a cheaper statement x:=y*y 
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 The  compiler  writer  should  examine  the  language  carefully     to  determine  what 

rearrangements  of  computations  are  permitted;  since  computer    arithmetic  does  not 

always obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y- 

x*z as x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c. 

 
4.   LOOPS IN FLOW GRAPH 

 
A graph representation of three-address statements, called a flow graph, is useful for 

understanding code-generation algorithms, even if the graph is not explicitly constructed by a 

code-generation algorithm. Nodes in the flow graph represent computations, and the edges 

represent the flow of control. 

 
4.1 Dominators: 

In a flow graph, a node d dominates node n, if every path from initial node of the flow 
graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the 

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. 

Similarlyeverynode dominates itself. 

 
Example: 

*In the flow  graph below, 

*Initial node,node1  dominates every node. *node 2 dominates  itself 

*node 3 dominates  all but 1 and 2. *node 4 dominates  all but 1,2 and 3. 

 
*node 5 and 6  dominates only themselves,since flow of control can skip around either by goin 

through the  other. 

*node 7 dominates  7,8 ,9 and 10. *node 8 dominates 8,9 and 10. 

 
*node 9 and 10  dominates only themselves. 
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 The way of presenting dominator information is in a tree, called  the dominator tree in 

which the initial node is the root. 

 
    The parent of each other node is its immediate dominator. 

    Each node d dominates only its descendents in the tree. 

 The existence of dominator tree follows from a property of dominators; each node has a 

unique immediate dominator in that is the last dominator of n on any path from the initial 

node to n. 
 

 

 In terms of the dom relation, the immediate dominator m has the property is d=!n and d 

dom n, then d dom m. 
 

 

D(1)={1} 

D(2)={1,2} 

D(3)={1,3} 

D(4)={1,3,4} 

D(5)={1,3,4,5} 
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D(6)={1,3,4,6} 

D(7)={1,3,4,7} 

D(8)={1,3,4,7,8} 

D(9)={1,3,4,7,8,9} 

D(10)={1,3,4,7,8,10} 

4.2Natural Loop: 

 
 One application of dominator information is in determining the loops of a flow graph 

suitable for improvement. 

 
    The properties of loops are 

 
o A  loop  must  have  a  single  entry  point,  called  the  header.  This  entry  point- 

dominates all nodes in the loop, or it would not be the sole entry to the loop. 

o There must be at least one wayto iterate the loop(i.e.)at least one path back to the 

header. 

 
 One way to find all the loops in a flow graph is to search for edges in the flow graph 

whose heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These 

types of edges are called as back edges. 

 
Example: 

In the above graph, 

7 → 4         4 DOM 7 

 
0 →7         7 DOM 10 

 
4 → 3 

 
8 → 3 

 
9 →1 

 
    The above  edges will form loop in flow graph. 

 Given a back  edge n → d, we define the natural loop of the edge to be d plus the set of 

nodes that can  reach n without going through d. Node d is the header of the loop. 

 
Algorithm: Constructing the natural loop of a back edge. 

Input: A flow graph G and a back edge n→d 
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Output: The set loop consisting of all nodes in the natural loop n→d. 

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make 

sure that m‟ s predecessors are also placed in loop. Each node in loop, except for d, is placed 

once on stack, so its predecessors will be examined. Note that because d is put in the loop 

initially, we never examine its predecessors, and thus find only those nodes that reach n 

without going through d. 

 
Procedure insert(m); 

if  m  is  not  in  loop  then 

begin  loop  :=  loop  U 

{m}; push m onto stack 

end; 
stack : =empty; 
loop : ={d}; 

insert(n); 

 
while stack is not empty do begin 

 
pop m, the first element of stack, off 

stack; for each predecessor p of m do 

insert(p) 

 
end Inner 

 
5.LOOP: 

 
 If we use the natural loops as “the loops”, then we have the useful property that unless 

two loops have the same header, they are either disjointed or one is entirely contained in 

the other. Thus, neglecting loops with the same header for the moment, we have a natural 

notion of inner loop: one that contains no other loop. 
 

 

 When two natural loops have the same header, but neither is nested within the other, they 

are combined and treated as a single loop. 

 
5.1Pre-Headers: 

 
 Several   transformations require us to move statements “before the header”. Therefore 

begin  treatment of a loop L by creating a new block, called the preheater. 

 
 The pre -header has only the header as successor, and all edges which formerly entered 

the header  of Lfrom outside L instead enter the pre-header. 

 
    Edges  from inside loop L to the header are not changed. 
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    Initially the pre-header is empty, but transformations on L may place statements in it. 

 
 
 
 

header                                                         pre- 

heade

r 

 
loop  L 

 
header 

 
loop L 

 
(a) Before                                                     (b) After 

 
5.2Reducible flow graphs: 

 
 Reducible flow graphs are special flow graphs, for which several code optimization 

transformations are especially easy to perform, loops are unambiguously defined, 

dominators can be easily calculated, data flow analysis problems can also be solved 

efficiently. 
 

 
 

 Exclusive use of structured flow-of-control statements such as if-then-else, while-do, 

continue, and break statements produces programs whose flow graphs are always 

reducible. The most important properties of reducible flow graphs are that  there are no 

jumps into the middle of loops from outside; the only entry to a loop is through   its 

header. 

 
    Definition: 

 
 A flow graph G is reducible if and only if we can partition the edges into two disjoint 

groups, forward edges and back edges, with the following properties. 

 
 The forward edges from an acyclic graph in which every node can be reached from initial 

node of G. 

 
    The back edges consist only of edges where heads dominate theirs tails. 

 
    Example: The above flow graph is reducible. 

 
 If we know the relation DOM for a flow graph, we can find and remove all the back 

edges. 
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    The remaining edges are forward edges. 

 
    If the  forward edges form an acyclic graph, then we can say the flow graph reducible. 

 
    In the   above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7 

whose heads dominate their tails, the remaining graph is acyclic. 

 
 The key  property of reducible flow graphs for loop analysis is that in such flow graphs 

every set of nodes that we would informally regard as a loop must contain a back edge. 

 
5.   PEEPHOLE  OPTIMIZATION 

 
 A    statement-by-statement  code-generations  strategy  often  produce  target  code  that 

contains   redundant instructions and suboptimal constructs .The quality of such target 

code can be improved by applying “optimizing” transformations to the target program. 

 
 A simple but effective technique for improving the target code is peephole optimization, 

a method for trying to improving the performance of the target program by examining a 

short sequence of target instructions (called the peephole) and replacing these instructions 

by a shorter or faster sequence, whenever possible. 

 
 The peephole is a small, moving window on the target program. The code in the peephole 

need not contiguous, although some implementations do require this.it is characteristic of 

peephole optimization that each improvement may spawn opportunities for additional 

improvements. 
 

 

 We shall give the following examples of program transformations that are characteristic 

of peephole optimizations: 

 
    Redundant-instructions elimination 

    Flow-of-control optimizations 

    Algebraic simplifications 

    Use of machine idioms 

    Unreachable Code 

 
6.1Redundant Loads And Stores: 
If we see the instructions sequence 

(1)    MOV R0,a 

(2)    MOV a,R0 

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of 

a is already in register R0.If (2) had a label we could not be sure that (1) was always executed 

immediately before (2) and so we could not remove (2). 
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6.2Unreachable Code: 

 
 Another   opportunity   for   peephole   optimizations   is   the   removal   of   unreachable 

instructions. An unlabeled instruction immediately following an unconditional jump may 

be removed. This operation can be repeated to eliminate a sequence of instructions. For 

example, for debugging purposes, a large program may have within it certain segments 

that are executed only if a  variable debug is 1. In C, the source code might look like: 

 
#define debug 

0 …. 

If ( debug ) { 

 
Print  debugging information 

 
} 

 

 
 

In the  intermediate representations the if-statement may be translated as: 

 
debug  =1 goto L2 

goto  L2 

L1: print debugging information 

 
L2:…………………………(a) 

 

 

 One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter 

what the value of debug; (a) can be replaced by: 

 
If debug ≠1 goto L2 

 
Print debugging information 

 
L2:……………………………(b) 

 
    As the argument of the statement of (b) evaluates to a constant true it can be replaced by 

If debug ≠0 goto L2 

 
Print debugging information 

 
L2:                                              ……………………………(c) 

 As the argument of the first statement of (c) evaluates to a constant true, it can be 

replaced by goto L2. Then all the statement that print debugging aids are manifestly 
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unreachable and can be eliminated one at a time. 

 
6.3Flows-Of-Control Optimizations: 

 
 The unnecessary jumps can be eliminated in either the intermediate code or the target 

code  by  the  following  types  of  peephole  optimizations.  We  can  replace  the  jump 

sequence 

 
goto L1 

…. 

L1:  gotoL2 

by the sequence 

goto  L2 

…. 

L1: goto  L2 

 
    If there are   now no jumps to L1, then it may be possible to eliminate the statement 

L1:goto L2 provided  it is preceded by an unconditional jump .Similarly, the sequence 

 
if a < b  goto L1 

…. 

L1: goto L2 

can be replaced by 

Ifa < b goto L2 

…. 

L1: goto L2 
 

 

 Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional 

goto. Then the sequence 

 
goto L1 

 
…….. 

L1: if a <b goto L2 

 
L3:…………………………………..(1) 

 
    Maybe replaced by 

Ifa<b goto L2 

goto L3 

……. 
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L3:………………………………….(2) 
 

 

 While the number of instructions in (1) and (2) is the same, we sometimes skip the 

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time 

 
6.4 Algebraic Simplification: 

 
 There is  no end to the amount of algebraic simplification that can be attempted through 

peephole  optimization. Only a few algebraic identities occur frequently enough that it is 

worth  considering implementing them .For example, statements such as 

 
x :=  x+0 

 
Or 

 
x := x  * 1 

 

 

 Areoften  produced by straightforward intermediate code-generation algorithms, and they 

can be eliminated  easily through peephole optimization. 

 
6.5Reduction in  Strength: 

 
 Reduction  in strength replaces expensive operations by equivalent cheaper ones on the 

target machine. Certain machine instructions are considerably cheaper than others and 

can often be used as special cases of more expensive operators. 

 
 For  example,  x²  is  invariably  cheaper  to  implement  as  x*x  than  as  a  call  to  an 

exponentiation  routine.  Fixed-point  multiplication  or  division  by a  power  of  two  is 

cheaper to implement as a shift. Floating-point division by a constant can be implemented 

as multiplication by a constant, which may be cheaper. 
 

X
2 

→ X*X 

 
6.6 Useof Machine Idioms: 

 
 The  target  machine  may  have  hardware  instructions  to  implement  certain  specific 

operations efficiently. For example, some machines have auto-increment and auto- 

decrement addressing modes. These add or subtract one from an operand before or after 

using its value. 

 
 The use of these modes greatly improves the quality of code when pushing or popping a 

stack, as in parameter passing. These modes can also be used in code for statements like 

i : =i+1. 

i:=i+1 → i++ 
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i:=i-1 → i-- 

 
6.    INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS 

 
 In order to do code optimization and a good job of code generation , compiler needs to 

collect information about the program as a whole and to distribute this information to 

each block in the flow graph. 

 
 A compiler could take advantage of “reaching definitions” , such as knowing where a 

variable like debug was last defined before reaching a given block, in order to perform 

transformations are just a few examples of data-flow information that an optimizing 

compiler collects by a process known as data-flow analysis. 
 

 

 Data- flow information can be collected by setting up and solving systems of equations 

of the form  : 

 
out [S] = gen [S] U ( in [S] – kill [S] ) 

 
This   equation can be read as  “ the information at the end of a statement is  either 

generated within   the statement , or enters at the beginning and is not killed as control 

flows through the  statement.” 

 
    The details of how data-flow equations are set and solved depend on three factors. 

 
 The notions of generating and killing depend on the desired information, i.e., on the data 

flow analysis problem to be solved. Moreover, for some problems, instead of 

proceeding along  with flow of control and defining out[s] in terms of in[s], we need to 

proceed backwards  and define in[s] in terms of out[s]. 

 
 Since data flows along control paths, data-flow analysis is affected by the constructs in 

a program. In fact, when we write out[s] we implicitly assume that there is unique end 

point where control leaves the statement; in general, equations are set up at the level of 

basic blocks rather than statements, because blocks do have unique end points. 
 

 

 There are subtleties that go along with such statements as procedure calls, assignments 

through pointer variables, and even assignments to array variables. 

 
Points and Paths: 

 
 Within a basic block, we talk of the point between two adjacent statements, as well as the 

point before the first statement and after the last. Thus, block B1 has four points: one 

before any of the assignments and one after each of the three assignments. 

B1 
 

d1: i:=m-1 

d2: j:=n 

d2:  a:=u1 
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d4: i=:=i+1 

 
 

B2 
 

d5: j=:=j-1 

 
B3 

 
 
 
 

B5                                                                                                                 B6 
 

d6: a:=u2 
 
 
 

 Now let  us take a global view and consider all the points in all the blocks. A path from 

p1 to pn is  a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, 

either 
 

 

 Pi  is  the    point  immediately  preceding  a  statement  and  pi+1  is  the  point 

immediately following that statement in the same block, or 

 
    Pi is the  end of some block and pi+1 is the beginning of a successor block. 

 
Reaching  definitions: 

 
 A definition  of variable x is a statement that assigns, or may assign, a value to x. The 

most common   forms of definition are assignments to x and statements that read a 

value from an i/o device and store it in x. 

 
 These statements certainly define a value for x, and they are referred to as unambiguous 

definitions of x. There are certain kinds of statements that may define a value for x; they 

are called ambiguous definitions. The most usual forms of ambiguous definitions of x 

are: 

 A call of a procedure with x as a parameter or a procedure that can access x because x is 

in the scope of the procedure. 
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 An assignment through a pointer that could refer to x. For example, the assignment *q: = 

y is a definition of x if it is possible that q points to x. we must assume that an assignment 

through a pointer is a definition of every variable. 

 
  We say a definition d reaches a point p if there is a path from the point immediately 

following d to p, such that d is not “killed” along that path. Thus a point can be reached 

by an unambiguous definition and an ambiguous definition of the  same variable 

appearing later along one path. 

 
Data-flow analysis of structured programs: 

 Flow graphs for control flow constructs such as do-while statements have a useful 

property: there is a single beginning point at which control enters and a single end 

point that control leaves from when execution of the statement is over. We exploit this 

property when we talk of the definitions reaching the beginning and the end of 

statements with the following syntax. 

 
S           id: = E| S; S | if E then S else S | do S while E 

E          id + id| id 

 Expressions in this language are similar to those in the intermediate code, but the 

flow graphs for statements have restricted forms. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S1                                         If E goto S1                                                        S1
 

 

 
 
 

S2 

S1                                       S2 

 

If E goto S1 

 
 
 
 

 

S1;S2 
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if E then S1 else S2                          do S1 while E 
 

 
 

 We define a portion of a flow graph called a region to be a set of nodes N that 

includes a header, which dominates all other nodes in the region. All edges between 

nodes in N are in the region, except for some that enter the header. 

 
 The portion of flow graph corresponding to a statement S is a region that obeys the 

further restriction that control can flow to just one outside block when it leaves the 

region. 

    We say that the beginning points of the dummy blocks at   the entry and exit of a 

statement‟ s region are the beginning and end points, respectively,   of the 

statement. The equations are inductive, or syntax-directed, definition of the sets in[S], 

out[S], gen[S], and kill[S] for all statements S. 

 
    gen[S]  is  the  set  of  definitions  “generated”  by  S  while  kill[S]  is  the  set  of 

definitions that never reach the end of S. 
 

    Consider the following data-flow equations for reaching definitions : 

i ) 
 

 
 
 
 

d : a : = b + c 

S 
 
 
 
 

gen [S] = { d } 

kill [S] = Da – { d } 

out [S] = gen [S] U ( in[S] – kill[S] ) 
 

 

 Observe   the rules for a single assignment of variable a. Surely that assignment is a 

definition  of a, say d. Thus Gen[S]={d} 

 
    On the   other hand, d “kills” all other definitions of a, so we 

write Kill[S]  = Da – {d} 

 
Where,  Da is the set of all definitions in the program for variable a. 

 

ii ) 
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S                                       S1 

 
 
 
 

S2 

 
 
 
 

gen[S]=gen[S2] U (gen[S1]-kill[S2])  
Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 

 
in [S1] = in [S] in 

[S2] = out [S1] out 

[S] = out [S2] 

 Under what circumstances is definition d generated by S=S1; S2? First of all, if it  is 

generated by S2, then it is surely generated by S. if d is generated by S1, it will reach the 

end of S provided it is not killed by S2. Thus, we write 

 
gen[S]=gen[S2] U (gen[S1]-kill[S2]) 

 
 Similar reasoning applies to the killing of a definition, so we have 

Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 

 
Conservative estimation of data-flow information: 

 
   There is a subtle miscalculation in the rules for gen and kill. We have made the 

assumption  that the conditional expression E in the if and do statements are 

“uninterpreted”;  that is, there exists inputs to the program that make their branches 

go either  way. 
 

 

   We  assume that any graph-theoretic path in the flow graph is also an execution path, 

i.e., a path  that is executed when the program is run with least one possible input. 

 
   When  we compare the computed gen with the “true” gen we discover that the true gen 

is always   a subset of the computed gen. on the other hand, the true kill is always a 

superset of the  computed kill. 

 
   These containments hold even after we consider the other rules. It is natural to wonder 

whether these differences between the true and computed gen and kill sets present a 

serious  obstacle to data-flow analysis. The answer lies in the use intended for these 

data. 
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   Overestimating the set of definitions reaching a point does not seem serious; it merely 

stops us  from doing an optimization that we could legitimately do. On the other hand, 

underestimating the set of definitions is a fatal error; it could lead us into making a 

change in the program that changes what the program computes. For the case of 

reaching definitions, then, we call a set of definitions safe or conservative if the estimate 

is a superset of the true set of reaching definitions. We call the estimate unsafe, if it is 

not necessarily a superset of the truth. 

 
 Returning now to the implications of safety on the estimation of gen and kill for reaching 

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in 

the safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a 

point, and cannot prevent a definition from reaching a place that it truly reached. 

 
Decreasing kill can only increase the set of definitions reaching any given point. 

 
Computation of in and out: Many data-flow problems can be solved by synthesized 

translations  similar to those used to compute gen and kill. It can be used, for example, to 

determine loop-invariant computations. 

 
 However, there are other kinds of data-flow information, such as the reaching-definitions 

problem. It turns out that in is an inherited attribute, and out is a synthesized attribute 

depending on in. we intend that in[S] be the set of definitions reaching the beginning of 

S, taking into account the flow of control throughout the entire program, including 

statements outside of S or within which S is nested. 
 

 
 

 The set out[S] is defined similarly for the end of s. it is important to note the distinction 

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S 

without following paths outside S. 

 
    Assuming we know in[S] we compute out by equation, that is 

 
    Out[S] = gen[S] U (in[S] - kill[S]) 

 
 Considering cascade of two statements S1; S2, as in the second case. We start by 

observingin[S 1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2], 

since a definition reaches the beginning of S2 if and only if it reaches the end of S1. 

Now we can  compute out[S2], and this set is equal to out[S]. 

 
 Considering if-statement we have conservatively assumed that control can follow 

either branch,  a definition reaches the beginning of S1 or S2 exactly when it reaches 

the beginning of S. 

 
    In[S1]  = in[S2] = in[S] 
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 If a  definition reaches the end of S if and only if it reaches the end of one or both 

sub statements;  i.e, 

 
    Out[S]=out[S 1] U out[S2] 

 
Representation of sets: 

 
 Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit 

vectors. We assign a number to each definition of interest in the flow graph. Then bit 

vector representing a set of definitions will have 1 in position I if and only if the 

definition numbered I is in the set. 

 
 The number of definition statement can be taken as the index of statement in an array 

holding pointers to statements. However, not all definitions may be of interest during 

global data-flow analysis. Therefore the number of definitions of interest will typically be 

recorded in a separate table. 

 
  A  bit  vector  representation  for  sets  also  allows  set  operations  to  be  implemented 

efficiently. The union and intersection of two sets can be implemented by logical or and 

logical and, respectively, basic operations in most systems-oriented programming 

languages. The difference A-B of sets A and B can be implemented  by taking the 

complement of B and then using logical and to compute A  . 

 
Local reaching definitions: 

 
 Space for data-flow information can be traded for time, by saving information only at 

certain  points  and,  as  needed,  recomputing  information  at  intervening  points.  Basic 

blocks are usually treated as a unit during global flow analysis, with attention restricted to 

only those points that are the beginnings of blocks. 

 
 Since there are usually many more points than blocks, restricting our effort to blocks is a 

significant savings. When needed, the reaching definitions for all points in a block can be 

calculated from the reaching definitions for the beginning of a block. 

 
Use-definition chains: 

 
 It is often  convenient to store the reaching definition information as” use-definition 

chains”    or  “ud-chains”,  which  are  lists,  for  each  use  of  a  variable,  of  all  the 

definitions that  reaches that use. If a use of variable a in block B is preceded by no 

unambiguous definition  of a, then ud-chain for that use of a is the set of definitions in 

in[B] that are definitions  ofa.in addition, if there are ambiguous definitions of a ,then 

all of these for which  no unambiguous definition of a lies between it and the use of a 

are on the ud-chain for this  use of a. 
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Evaluation  order: 

 
 The   techniques for conserving space during attribute evaluation, also apply to the 

computation   of data-flow information using specifications. Specifically, the only 

constraint  on the evaluation order for the gen, kill, in and out sets for statements is 

that imposed   by dependencies between these sets. Having chosen an evaluation 

order, we are free to  release the space for a set after all uses of it have occurred. 
 

 

 Earlier circular dependencies between attributes were not allowed, but we have seen 

that data-flow equations may have circular dependencies. 

 
General control flow: 

 
 Data-flow analysis must take all control paths into account. If the control paths are 

evident from the syntax, then data-flow equations can be set up and solved in a syntax- 

directed manner. 

 
 When programs can contain goto statements or even the more disciplined break and 

continue statements, the approach we have taken must be modified to take the actual 

control paths into account. 

 
    Several approaches may be taken. The iterative method works arbitrary flow graphs. 

Since the flow graphs obtained in the presence of break and continue statements are 
reducible, such constraints can be handled systematically using the interval-based 

methods 

 However,  the  syntax-directed  approach  need  not  be  abandoned  when    break  and 

continue statements are allowed. 

 
CODE IMPROVIG TRANSFORMATIONS 

 
 Algorithms for performing the code improving transformations rely on data-flow 

information. Here we consider common sub-expression elimination, copy propagation 

and transformations for moving loop invariant computations out of loops and for 

eliminating induction variables. 
 

 

 Global  transformations  are  not  substitute  for  local  transformations;  both  must  be 

performed. 

 
Elimination of global common sub expressions: 

 
 The available expressions data-flow problem discussed in the last section allows us to 

determine if an expression at point p in a flow graph is a common sub-expression. 

The following algorithm formalizes the intuitive ideas presented for eliminating 

common sub-expressions. 
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ALGORITHM: Global common sub expression elimination. 
 

INPUT : A flow graph with available expression information. 

 
OUTPUT:  A revised flow graph. 

 

METHOD:  For every statement s of the form x := y+z
6 

such that y+z is available at the 

beginning  of block and neither y nor r z is defined prior to statement s in that block, do 

the  following. 

 
  To discover the evaluations of y+z that reach s‟ s block, we follow flow graph 

edges, searching backward from s‟ s block. However, we do not go through  any 

block that evaluates y+z. Thelast evaluation of y+z in each block  encountered is an 

evaluation of y+z that reaches s. 

 
    Create new variable u. 

 
    Replace each statement w: =y+z found in (1) by 

 
    u : = y + z w : =u 

 
    Replace statement s by x:=u. 

 
Some remarks about this algorithm are in order. 

 
 The search in step(1) of the algorithm for the evaluations of y+z that reach statement s 

can also be formulated as a data-flow analysis problem. However, it does not make sense 

to solve it for all expressions y+z and all statements or blocks because too much 

irrelevant information is gathered. 

 
 Not all changes made by algorithm are improvements. We might  wish to limit 

the number of different evaluations reaching s found in step (1), probably to one. 

 
 Algorithm will miss the fact that a*z and c*z must have the same value in 

a :=x+y                              c :=x+y 

vs 

 
b :=a*z                              d :=c*z 

 
 Because this simple approach to common sub expressions considers only the literal 

expressions themselves, rather than the values computed by expressions. 
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Copy propagation: 

 
 Various algorithms introduce copy statements such as x :=copies may also be generated 

directly by the intermediate code generator, although most of these involve temporaries 

local to  one block and can be removed by the dag construction. We may substitute y for 

x in all  these places, provided the following conditions are met every such use u of x. 

 
    Statement  s must be the only definition of x reaching u. 

 
 On every  path from s to including paths that go through u several times, there are 

no assignments  to y. 

 
 Condition  (1) can be checked using ud-changing information. We shall set up a new 

data-flow  analysis problem in which in[B] is the set of copies s: x:=y such that every 

path from  initial node to the beginning of B contains the statement s, and subsequent to 

the last  occurrence of s, there are no assignments to y. 
 
 
 
 

ALGORITHM: Copy propagation. 

 
INPUT: a flow graph G, with ud-chains giving the definitions reaching block B, and 

with c_in[B] representing the solution to equations that is the set of copies x:=y 

that reach block B along every path, with no assignment to x or y following the last 

occurrence of x:=y on the path. We also need ud-chains giving the uses of each 

definition. 

 
OUTPUT: A revised flow graph. 

 
METHOD: For each copy s : x:=y do the following: 

 
    Determine those uses of x that are reached by this definition of namely, s: x: =y. 

 
 Determine whether for every use of x found in (1) , s is in c_in[B], where B is the block 

of this particular use, and moreover, no definitions of x or y occur prior to this use of x 

within B. Recall that if s is in c in[B]then s is the only definition of x that reaches B. 

 If s meets the conditions of (2), then remove s and replace all  uses of x found in (1) by 

y. 

 
Detection of loop-invariant computations: 

 
 Ud-chains can be used to detect those computations in a loop that are loop-invariant, that 

is, whose value does not change as long as control stays within the loop. Loop is a region 

consisting of set of blocks with a header that dominates all the other blocks, so the only 
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way to enter the loop is through the header. 

 
 If an assignment x := y+z is at a position in the loop where all possible definitions of y 

and z are outside the loop, then y+z is loop-invariant because its value will be the same 

each time x:=y+z is encountered. Having recognized that value of x will not change, 

consider v := x+w, where w could only have been defined outside the loop, then x+w is 

also loop-invariant. 

 
ALGORITHM: Detection of loop-invariant computations. 

 
INPUT:  A loop L consisting of a set of basic blocks, each block containing sequence of 

three  -address  statements.  We  assume  ud-chains  are  available  for  the  individual 

statements. 

 
OUTPUT:  the set of three-address statements that compute the same value each time 

executed,  from the time control enters the loop L until control next leaves L. 

 
METHOD:  we shall give a rather informal specification of the algorithm, trusting that 

the  principles will be clear. 
 

 

 Mark  “invariant” those statements whose operands are all either constant or have all 

their reaching definitions outside L. 

 
    Repeat  step (3) until at some repetition no new statements are marked “invariant”. 

 
 Mark  “invariant” all those statements not previously so marked all of whose operands 

either are constant, have all their reaching definitions outside L, or have exactly one 

reaching definition, and that definition is a statement in L marked invariant. 

 
Performing code motion: 

 
 Having found the invariant statements within a loop, we can apply to some of them an 

optimization known as code motion, in which the statements are moved to pre-header of 

the loop. The following three conditions ensure that code motion does not change what 

the program computes. Consider s: x: =y+z. 

 
 The block containing s dominates all exit nodes of the loop, where an exit of a loop is a 

node with a successor not in the loop. 

 
 There is no other statement in the loop that assigns to x. Again, if x is a temporary 

assigned only once, this condition is surely satisfied and need not be changed. 

 No use of x in the loop is reached by any definition of x other than  s. This condition too 

will be satisfied, normally, if x is temporary. 
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ALGORITHM: Code motion. 

 
INPUT: A loop L with ud-chaining information and dominator information. 

 
OUTPUT: A revised version of the loop with a pre-header and some statements 

moved to the pre-header. 

 
METHOD: 

 
    Use loop-invariant computation algorithm to find loop-invariant statements. 

    For each statement s defining x found in step(1), check: 

     That it is in a block that dominates all exits of L, 

     That x is not defined elsewhere in L, and 

     That all uses in L of x can only be reached by the definition of x in statement  s. 

    Move, in the order found by loop-invariant algorithm, each statement s found in 

 (1) and meeting conditions (2i), (2ii), (2iii) , to a newly created pre-header, 

provided any operands of s that are defined in loop L have previously had their 

definition statements moved to the pre-header. 

 
 To   understand why no change to what the program computes can occur, condition 

(2i) and (2ii)  of this algorithm assure that the value of x computed at s must be the 

value of x after any  exit block of L. When we move s to a pre-header, s will still be 

the definition of x that  reaches the end of any exit block of L. Condition (2iii) assures 

that any uses of x within  L did, and will continue to, use the value of x computed by 

s. 

 
Alternative code motion strategies: 

 
 The condition (1) can be relaxed if we are willing to take the risk that we may actually 

increase the running time of the program a bit; of course, we never change what the 

program computes. The relaxed version of code motion condition (1) is that we may 

move a statement s assigning x only if: 

 
1‟ . The block containing s either dominates all exists of the loop, or x is not used 

outside the loop. For example, if x is a temporary variable, we can be sure that the 

value will be used only in its own block. 

 
If code motion algorithm is modified to use condition (1‟ ), occasionally the running 

time will increase, but we can expect to do reasonably well on the average. The 

modified algorithm may move to pre-header certain computations that may not be 

executed in the loop. Not only does this risk slowing down the program significantly, 

it may also cause an error in certain circumstances. 

 
 Even if none of the conditions of (2i), (2ii), (2iii) of code motion algorithm are met by an 
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assignment x: =y+z, we can still take the computation y+z outside a loop. Create a new 

temporary t, and set t: =y+z in the pre-header. Then replace x: =y+z by x: =t in the loop. 

In many cases we can propagate out the copy statement x: = t. 

 
Maintaining data-flow information after code motion: 

 
 The transformations of code motion algorithm do not change ud-chaining 

information, since by condition (2i), (2ii), and (2iii), all uses of the variable 

assigned by a moved statement s that were reached by s are still reached by s from 

its new position. 

 
 Definitions of variables used by s are either outside L, in which case they reach the 

pre-header, or they are inside L, in which case by step (3) they were moved to pre- 

header ahead of  s. 

 
 If the  ud-chains are represented by lists of pointers to pointers to statements, we can 

maintain  ud-chains when we move statement s by simply changing the pointer to s 

when we move  it. That is, we create for each statement s pointer ps, which always 

points to s. 

 
 We put  the pointer on each ud-chain containing s. Then, no matter where we move 

s, we have only to change ps , regardless of how many ud-chains s is on. 

 
    The dominator information is changed slightly by code motion. The pre-header is 

now the immediate dominator of the header, and the immediate dominator of the pre- 

header is the node  that formerly was the immediate dominator of the header. That is, 

the pre-header is inserted  into the dominator tree as the parent of the header. 

 
Elimination  of induction variable: 

 
 A variable  x is called an induction variable of a loop L if every time the variable x 

changes values, it is incremented or decremented by some constant. Often, an induction 

variable is incremented by the same constant each time around the loop, as in a loop 

headed by for i := 1 to 10. 

 
 However, our methods deal with variables that are incremented or decremented zero, 

one, two, or more times as we go around a loop. The number of changes to an induction 

variable may even differ at different iterations. 

 
 A common situation is one in which an induction variable, say i, indexes an array, 

and some other induction variable, say t, whose value is a linear function of i, is the 

actual offset used to access the array. Often, the only use made of i is in the test for 

loop termination. We can then get rid of i by replacing its test by one on t. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


 

 

 
 
 
 
 

 
 We shall look for basic induction variables, which are those variables i whose only 

assignments within loop L are of the form i := i+c or i-c, where c is a constant. 

 
ALGORITHM: Elimination of induction variables. 

 
INPUT: A loop L with reaching definition information, loop- invariant computation 

information and live variable information. 

 
OUTPUT: A revised loop. 

 
METHOD: 

 
 Consider each basic induction variable i whose only uses are to compute other induction 

variables in its family and in conditional branches. Take some j in i‟ s family, 

preferably one such that c and d in its triple are as simple as possible and modify each test 

that i appears in to use j instead. We assume in the following tat c is positive. A test of the 

form 

„if i relop x goto B‟ , where x is not an induction variable, is replaced 

by r := c*x /* r := x if c is 1. */ 

r := r+d /* omit if d is 0 */ 

 
if j relop r goto B 

 
where,  r is a new temporary. The case „if x relop i goto B‟ is handled  analogously. If there 

are two induction variables i1 and i2 in the test if i 1 relop i2 goto  B, then we check if both 

i1 and i2 can be replaced. The easy case is when we have  j1 with triple and j2 with triple, 

and c1=c2 and d1=d2. Then, i1 relop i2 is  equivalent to j1 relop j2. 
 

 

 Now,  consider each induction variable j for which a statement j: =s was  introduced. First 

check that there can be no assignment to s between the  introduced statement j :=s and 

any use of j. In the usual situation, j is used in the block  in which it is defined, 

simplifying this check; otherwise, reaching definitions information, plus some graph 

analysis is needed to implement the check.  Then replace all uses of j by uses of s and 

delete statement j: =s. 
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UNIT-5 

OBJECT CODE GENERATION 

OBJECT CODE GENERATION: 
The final phase in our compiler model is the code generator. It takes as input an intermediate 

representation of the source program and produces as output an equivalent target program. 

The requirements traditionally imposed on a code generator are severe. The output code must be 

correct and of high quality, meaning that it should make effective use of the resources of the 

target machine. Moreover, the code generator itself should run efficiently. 
 
 
 

 

 
 

 
 
 
 

fig. 1 
 
 
 

 
ISSUES IN THE DESIGN OF A CODE GENERATOR 

 
While the details are dependent on the target language and the operating system, 

issues such as memory management, instruction selection, register allocation, and evaluation 

order are inherent in almost all code generation problems. 



 

 

 
 
 
 
 

 

INPUT TO THE CODE GENERATOR 

 
The input to the code generator consists of the intermediate representation of the 

source program produced by the front end, together with information in the symbol table that is 

used to determine the run time addresses of the data objects denoted by the names in the 

intermediate representation. 

 
There are several choices for the intermediate language, including: linear 

representations such as postfix notation, three address representations such as quadruples, virtual 

machine representations such as syntax trees and dags. 

 
We assume that prior to code generation the front end has scanned, parsed, and translated the 

source program into a reasonably detailed intermediate representation, so the values of names 

appearing in the intermediate language can be represented by quantities that the target machine 

can directly manipulate (bits, integers, reals, pointers, etc.). We also assume that the necessary 

type  checking  has  take  place,  so  type  conversion  operators  have  been  inserted  wherever 

necessary and obvious semantic errors (e.g., attempting to index an array by a floating point 

number) have already been detected. The code generation phase can therefore proceed on the 

assumption that its input is free of errors. In some compilers, this kind of semantic checking is 

done together with code generation. 

 
TARGET PROGRAMS 

 

 

The output of the code generator is the target program. The output may take on a 

variety of forms: absolute machine language, relocatable machine language, or assembly 

language. 

 
Producing an absolute machine language program as output has the advantage that it 

can be placed in a location in memory and immediately executed. A small program can be 

compiled and executed quickly. A number of  “student-job” compilers, such as WATFIV and 

PL/C, produce absolute code. 

 
Producing a relocatable machine language program as output allows subprograms 

to be compiled separately. A set of relocatable object modules can be linked together and loaded 

for execution by a linking loader. Although we must pay the added expense of linking and 

loading if we produce relocatable object modules, we gain a great deal of flexibility in being able 

to compile subroutines separately and to call other previously compiled programs from an object 

module.  If the target  machine does  not  handle  relocation  automatically,  the  compiler must 

provide explicit relocation information to the loader to link the separately compiled program 

segments. 



 

 

 
 
 
 
 

 

Producing an assembly language program as output makes the process of code 

generation somewhat easier .We can generate symbolic instructions and use the macro facilities 

of the assembler to help generate code .The price paid is the assembly step after code generation. 

 
Because producing assembly code does not duplicate the entire task of the assembler, this choice 

is  another  reasonable  alternative,  especially  for  a  machine  with  a  small  memory,  where  a 

compiler must uses several passes. 

 
MEMORY MANAGEMENT 

 

 

Mapping names in the source program to addresses of data objects in run time 

memory is done cooperatively by the front end and the code generator. We assume that a name 

in a three-address statement refers to a symbol table entry for the name. 

 
If machine code is being generated, labels in three address statements have to be 

converted to addresses of instructions. This process is analogous to the “back patching”. Suppose 

that labels refer to quadruple numbers in a quadruple array. As we scan each quadruple in turn 

we can deduce the location of the first machine instruction generated for that quadruple, simply 

by maintaining a count of the number of words used for the instructions generated so far. This 

count can be kept in the quadruple array (in an extra field), so if a reference such as j: goto i is 

encountered, and i is less than j, the current quadruple number, we may simply generate a jump 

instruction with the target address equal to the machine location of the first instruction in the 

code for quadruple i. If, however, the jump is forward, so i exceeds j, we must store on a list for 

quadruple i the location of the first machine instruction generated for quadruple j. Then we 

process quadruple i, we fill in the proper machine location for all instructions that are forward 

jumps to i. 

 
INSTRUCTION SELECTION 

 

 

The nature of the instruction set of the target machine determines the difficulty of 

instruction  selection.  The  uniformity  and  completeness  of  the  instruction  set  are  important 

factors. If the target machine does not support each data type in a uniform manner, then each 

exception to the general rule requires special handling. 

 
Instruction speeds and machine idioms are other important factors. If we do not care 

about the efficiency of the target program, instruction selection is straightforward. For each type 

of three- address statement we can design a code skeleton that outlines the target code to be 

generated for that construct. 



 

 

 
 
 
 
 

 

For example, every three address statement of the form x := y + z, where x, y, and z are statically 

allocated, can be translated into the code sequence 

 
MOV y, R0   /* load y into register R0  */ 

ADD z, R0    /* add z to R0 */ 

MOV R0, x   /* store R0 into x */ 
 

 

Unfortunately, this kind of statement – by - statement code generation often produces poor code. 

For example, the sequence of statements 

 
a := b + c 

d := a + e 

Would be translated into 
 

 

MOV  b, R0 
 

 

ADD    c, R0 
 

 

MOV  R0, a 
 

 

MOV  a, R0 
 

 

ADD    e, R0 
 

 

MOV  R0, d 
 

 

Here the fourth statement is redundant, and so is the third if „a‟  is not subsequently 

used. 
 

 

The quality of the generated code is determined by its speed and size. 
 

 

A target machine with a rich instruction set may provide several ways of implementing a given 

operation. Since the cost differences between different implementations may be significant, a 

naive translation of the intermediate code may lead to correct, but unacceptably inefficient target 

code. For example if the target machine has an  “increment” instruction (INC), then the three 

address statement a := a+1 may be implemented more efficiently by the single instruction INC a, 



 

 

 
 
 
 
 

 

rather than by a more obvious sequence that loads a into a register, add one to the register, and 

then stores the result back into a. 

 
MOV  a, R0 

 

 

ADD    #1,R0 
 

 

MOV  R0, a 
 

 

Instruction speeds are needed to design good code sequence but unfortunately, 

accurate timing information is often difficult to obtain. Deciding which machine code sequence 

is best for a given three address construct may also require knowledge about the context in which 

that construct appears. 

 
REGISTER ALLOCATION 

 

 

Instructions involving register operands are usually shorter and faster than those 

involving  operands  in  memory.  Therefore,  efficient  utilization  of  register  is  particularly 

important  in  generating  good  code.  The  use  of  registers  is  often  subdivided  into  two  sub 

problems: 

 
1. During register allocation, we select the set of variables that will reside in registers at a point in 

the program. 

 
2. During a subsequent register assignment phase, we pick the specific register that a variable will 

reside in. 

 
Finding an optimal assignment of registers to variables is difficult, even with single 

register values. Mathematically, the problem is NP-complete. The problem is further complicated 

because the hardware and/or the operating system of the target machine may require that certain 

register usage conventions be observed. 

 
Certain machines require register pairs (an even and next odd numbered register) 

for some operands and results. For example, in the IBM System/370 machines integer 

multiplication and integer division involve register pairs. The multiplication instruction is of the 

form 

 
M    x, y 

 

 

where x, is the multiplicand, is the even register of an even/odd register pair. 



 

 

 
 
 
 
 

 

The multiplicand value is taken from the odd register pair. The multiplier y is a single register. 

The product occupies the entire even/odd register pair. 

 
The division instruction is of the form 

 

 

D     x, y 
 

 

where the 64-bit dividend occupies an even/odd register pair whose even register is x; y 

represents the divisor. After division, the even register holds the remainder and the odd register 

the quotient. 

 
Now consider the two three address code sequences (a) and (b) in which the only difference is 

the operator in the second statement. The shortest assembly sequence for (a) and (b) are given 

in(c). 

 
Ri stands for register i. L, ST and A stand for load, store and add respectively. The optimal 

choice for the register into which „a‟  is to be loaded depends on what will ultimately happen to e. 
 

 

t  := a + b                                              t := a + b 
 

 

t  := t * c                                               t  := t + c 

t  := t / d                                                t  := t / d 

(b) fig. 2 Two three address code sequences 

L    R1, a                                        L           R0, a 
 

 

A      R1, b                                       A            R0, b 
 

 

M     R0, c                                        A            R0, c 
 

 

D      R0, d                                       SRDA     R0, 32 
 

 

ST     R1, t                                       D             R0, d 
 

 

ST           R1, t 
 

 

(a)                                                       (b) 
 

 

fig.3   Optimal machine code sequence 



 

 

 
 
 
 
 
 
 
 

 

CHOICE OF EVALUATION ORDER 

 
The order in which computations are performed can affect the efficiency of the 

target code. Some computation orders require fewer registers to hold intermediate results than 

others. Picking a best order is another difficult, NP-complete problem. Initially, we shall avoid 

the problem by generating code for the three -address statements in the order in which they have 

been produced by the intermediate code generator. 

 
APPROCHES TO CODE GENERATION 

 

 

The most important criterion for a code generator is that it produce correct code. 

Correctness takes on special significance because of the number of special cases that code 

generator must face. Given the premium on correctness, designing a code generator so it can be 

easily implemented, tested, and maintained is an important design goal. 

 
BASIC BLOCKS AND FLOW GRAPHS 

 
A graph representation of three-address statements, called a flow graph, is useful 

for understanding code-generation algorithms, even if the graph is not explicitly constructed by a 

code-generation  algorithm.  Nodes  in  the flow  graph  represent  computations,  and  the edges 

represent the flow of control. Flow graph of a program can be used as a vehicle to collect 

information about the intermediate program. Some register-assignment algorithms use flow 

graphs to find the inner loops where a program is expected to spend most of its time. 

 
BASIC BLOCKS 

 
A basic block is a sequence of consecutive statements in which flow of control 

enters at the beginning and leaves at the end without halt or possibility of branching except at the 

end. The following sequence of three-address statements forms a basic block: 

 
t1 := a*a 

t2 := a*b 

t3 := 2*t2 

t4 := t1+t3 

t5 := b*b 



 

 

 
 
 
 
 

 

t6 := t4+t5 
 

 

A three-address statement x := y+z is said to define x and to use y or z. A name in a basic block 

is said to live at a given point if its value is used after that point in the program, perhaps in 

another basic block. 

 
The following algorithm can be used to partition a sequence of three-address statements into 

basic blocks. 

 
Algorithm 1: Partition into basic blocks. 

 

 

Input: A sequence of three-address statements. 
 

 

Output: A list of basic blocks with each three-address statement in exactly one block. 

Method: 

1.   We first determine the set of leaders, the first statements of basic blocks. 

 
The rules we use are the following: 

I) The first statement is a leader. 

II) Any statement that is the target of a conditional or unconditional goto is a leader. 
 

III) Any statement that immediately follows a goto or conditional goto statement is a leader. 
 

2. For each leader, its basic block consists of the leader and all statements up to but not 

including the next leader or the end of the program. 

 
Example: Consider the fragment of source code shown in fig. 7; it computes the dot product of 

two vectors a and b of length 20. A list of three-address statements performing this computation 

on our target machine is shown in fig. 8. 

 
begin 

 

 

prod := 0; 
 

 

i := 1; 
 

 

do begin 



 

 

 
 
 
 
 

 

prod := prod + a[i] * b[i]; 
 

 

i := i+1; 
 

 

end 
 

 

while  i<= 20 

end 

fig 7: program to compute dot product 
 

 

Let us apply Algorithm 1 to the three-address code in fig 8 to determine its basic 

blocks.  Statement (1) is a leader by rule (I) and statement (3) is a leader by rule (II), since the 

last statement can jump to it. By rule (III) the statement following (12) is a leader. Therefore, 

statements  (1)  and  (2)  form  a  basic  block.  The  remainder  of  the  program  beginning  with 

statement (3) forms a second basic block. 
 

(1)   prod := 0 

(2)   i := 1 

(3)   t1 := 4*i 

(4)   t2 := a [ t1 ] 

(5)   t3 := 4*i 

(6)   t4 :=b [ t3 ] 

(7)   t5 := t2*t4 

(8)   t6 := prod +t5 

(9)   prod := t6 

(10)  t7 := i+1 

(11)  i := t7 

(12)  if i<=20 goto (3) 

fig 8. Three-address code computing dot product 

prod := 0 
 

i := 1 



 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TRANSFORMATIONS ON 

BASIC BLOCKS 
 

 
 
 
 
 
 
 
 

A basic block computes a set of expressions. These expressions are the values of the names live 

on exit from block. Two basic blocks are said to be equivalent if they compute the same set of 

expressions. 
 

A number of transformations can be applied to a basic block without changing the 

set  of  expressions  computed  by  the  block.  Many  of  these  transformations  are  useful  for 

improving the quality of code that will be ultimately generated from a basic block. There are two 

important classes of local transformations that can be applied to basic blocks; these are the 

structure-preserving transformations and the algebraic transformations. 
 

STRUCTURE-PRESERVING TRANSFORMATIONS 
 

The primary structure-preserving transformations on basic blocks are: 
 

1.      Common sub-expression elimination 
 

2.      dead-code elimination 
 

3.      Renaming of temporary variables 
 

4.      Interchange of two independent adjacent statements 
 

We assume basic blocks have no arrays, pointers, or procedure calls. 



 

 

 
 
 
 
 

 

1.      Common sub-expression elimination 
 

Consider the basic block 

a:= b+c 

b:= a-d 

c:= b+c 

d:= a-d 

The second and fourth statements compute the same expression, 
 

namely b+c-d, and hence this basic block may be transformed into the equivalent block 

a:= b+c 

b:= a-d 

c:= b+c 

d:= b 

Although the 1
st 

and 3
rd 

statements in both cases appear to have the same expression on the right, 

the second statement redefines b. Therefore, the value of b in the 3
rd 

statement is different from 

the value of b in the 1
st
, and the 1

st 
and 3

rd 
statements do not compute the same expression. 

 

2.      Dead-code elimination 
 

Suppose x is dead, that is, never subsequently used, at the point where the statement x:= y+z 

appears in a basic block. Then this statement may be safely removed without changing the value 

of the basic block. 
 

3.      Renaming temporary variables 
 

Suppose we have a statement t:= b+c, where t is a temporary. If we change this statement to u:= 

b+c, where u is a new temporary variable, and change all uses of this instance of t to u, then the 

value of the basic block is not changed. In fact, we can always transform a basic block into an 

equivalent block in which each statement that defines a temporary defines a new temporary. We 

call such a basic block a normal-form block. 
 

4.   Interchange of statements 
 

Suppose we have a block with the two adjacent statements 



 

 

 
 

 
 
 
 
 

 

t1:= b+c 

t2:= x+y 

Then we can interchange the two statements without affecting the value of the block if and only 

if neither x nor y is t1 and neither b nor c is t2. A normal-form basic block permits all statement 

interchanges that are possible. 
 

The target machine characteristics are 
 

   Byte-addressable, 4 bytes/word, n  registers 
 

   Two operand instructions of the form 
 

   Op source, destination 
 

   Example opcodes: MOV, ADD, SUB, MULT 
 

   Several addressing modes 
 

   An instruction has an associated cost 
 

   Cost corresponds to length of instruction 
 

 
 

Addressing 

Modes & 

Extra Costs 



 

 

 
 
 
 
 

 

1)  Generate target code for the source language statement 

“(a-b) + (a-c) + (a-c);” 
 

The 3AC for this can be written as 

t := a – b 

u := a – c 

v := t + u 

d := v + u        //d live at the end 
 

Show the code sequence generated by the simple code generation algorithm 
 

What is its cost? Can it be improved? 
 

 

 
 
 

Total cost=12 


